
Philosophia Mathematica (III) (2007), page 1 of 17
doi:10.1093/philmat/nkm025

The Explanatory Power of Phase Spaces†

Aidan Lyon* and Mark Colyvan**

David Malament argued that Hartry Field’s nominalisation program is
unlikely to be able to deal with non-space-time theories such as phase-
space theories. We give a specific example of such a phase-space theory
and argue that this presentation of the theory delivers explanations
that are not available in the classical presentation of the theory. This
suggests that even if phase-space theories can be nominalised, the
resulting theory will not have the explanatory power of the original.
Phase-space theories thus raise problems for nominalists that go beyond
Malament’s initial concerns.

1. Introduction

In one of the first discussions of Hartry Field’s Science Without Numbers,
David Malament raised a number of objections that set the agenda for
much of the subsequent debate. In our view, one of these objections
has been underappreciated. The objection in question concerns the
plausibility of nominalising non-space-time theories such as phase-space
theories. A great deal of attention has been focused on the question of
whether quantum mechanics, with its underlying Hilbert spaces, can be
nominalised. But few seem concerned about the status of Hamiltonian
formulations of classical theories and their reliance on phase spaces. The
problem, in a nutshell, is that phase spaces are spaces of possible, but
mostly non-actual, initial conditions. These are not the kind of entities
that even liberal nominalists like Field are able to accept. So first we
explore the use of phase spaces in physics, and we do this by way
of an example: the Hénon-Heiles system. We show that although there
is a Lagrangian formulation of the theory in question that does not
employ phase spaces, the cost of adopting such an approach is a loss
of explanatory power.

Our example also sheds light on another debate in the recent
philosophy-of-mathematics literature: the issue of whether mathematics
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can provide explanations of physical phenomena. One of the present
authors has argued elsewhere that mathematics can unify physical
theories [Colyvan, 2001; 2002] and in some cases mathematics can offer
genuine explanations [Colyvan, 2001; forthcoming]. (See also [Baker,
2005], [Melia, 2002], and [Steiner, 1978a] on this issue.) The reason this
is important is that if mathematics can offer explanations of physical
phenomena, the nominalist’s task is all the more difficult. After all, for
scientific realists such as Hartry Field, who accept inference to the best
explanation, dispensing with entities that are genuinely explanatory is no
easy matter. We will argue that our example suggests that Hamiltonian
formulations of theories (with their underlying phase spaces) are able
to explain certain features of the physical system in question that the
alternative (Lagrangian) formulation does not seem able to explain. A
nominalist alternative to a physical theory that lacks the explanatory
power of its Platonist counterpart is no alternative at all. Putting these
two points together suggests that Hamiltonian formulations of classical
theories present genuine problems for at least Field-style nominalisation
programs.

Before we start on Malament’s objection and our main example,
let us prepare the ground a little by presenting an example of how
mathematics might be thought to be offering explanations of physical
(in this case biological) phenomena. Start with the question of why
hive-bee honeycomb has a hexagonal structure. What needs explaining
here is why the honeycomb is always divided up into hexagons and not
some other polygon (such as triangles or squares), or any combination
of different (concave or convex) polygons.1 Biologists assume that hive-
bees minimise the amount of wax they use to build their combs, since
there is an evolutionary advantage in doing so. For example, in the Origin
of Species Darwin writes:

[ . . . ] that individual swarm which thus made the best cells
with least labour, and least waste of honey in the secretion
of wax, having succeeded best, and having transmitted their
newly-acquired economical instincts to new swarms, which
in their turn will have had the best chance of succeeding in
the struggle for existence. [Darwin, 1998, p. 350]

So the biological part of the explanation is that those bees which minimise
the amount of wax they use to build their combs tend to be selected over
bees that waste energy by building combs with excessive amounts of
wax. The mathematical part of the explanation then comes from what
is known as the honeycomb conjecture: a hexagonal grid represents the

1 A convex polygon is one which contains any line segment between its points, and
a concave polygon is any polygon which does not satisfy this condition.
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Fig. 1. The configuration space (left) for a two-particle system (right).

best way to divide a surface into regions of equal area with the least total
perimeter.2 This conjecture was proved in 1999 by Thomas C. Hales
[2001], and this proof explains why a hexagonal grid is the optimal way
to divide a surface up into regions of equal area.3 So the honeycomb
conjecture (now the honeycomb theorem), coupled with the evolutionary
part of the explanation, explains why the hive-bee divides the honeycomb
up into hexagons rather than some other shape, and it is arguably our
best explanation for this phenomenon.

The explanatory role that mathematics plays in science will be of
crucial importance to the purposes of this paper, and so it will be
useful to keep it in mind until we return to the issue again at the
end of section two. The point is that Field accepts the principle of
inference to the best explanation [1989, pp. 15–16]; so any nominalist
reformulation of our scientific theories that he provides must have at
least the same explanatory resources as the Platonist counterparts. In
section three we will argue that even if Field is successful in providing a
nominalist reformulation of our scientific theories, there are examples
of mathematical explanations to which there is no non-mathematical
counterpart.

2 The honeycomb conjecture should not be confused with the circle-packing prob-
lem. The circle-packing problem concerns which arrangement of circles in the two-
dimensional plane will constitute the densest possible packing. Gauss proved that the
hexagonal arrangement was the densest packing of circles out of all possible regular
arrangements, and László Fejes Tóth proved the more general result: that this is true for
regular and irregular arrangements. The honeycomb conjecture states that the optimal
way to divide the two-dimensional plane into regions (of any shape) of equal area with
least total perimeter is the hexagonal grid.

3 There are some interesting questions here about the explanatory power of proofs.
Conventional wisdom has it that not all proofs are explanatory; some do and some
do not explain the theorem in question. The idea is that proof and intra-mathematical
explanation can come apart. Interesting as these issues are, we will not pause over them
here. Our interest is primarily with mathematical explanation of physical phenomena
(what we might think of as extra-mathematical explanation). See [Steiner, 1978b] for
more on intra-mathematical explanations.
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2. Malament’s Objection

Let us begin with a review of some basic mechanics. A configuration
space, Q, of a physical system, is a space whose points represent
different possible configurations of that physical system. For example,
the configuration space for a system containing two particles, each with
one degree of freedom is R

2. Any given state of such a system can be
represented by a point in the configuration space shown in Figure 1. The
point p in the configuration space Q represents the positions of particles
1 and 2 on the line relative to some frame of reference. For a system of
N particles each with three degrees of freedom—that is N particles in
physical space—the configuration space is

Q = R
3N

since it takes three numbers to represent each particle’s position in
physical space.

The Lagrangian function L is introduced as the kinetic energy T of
the system less the potential energy V :

L = T − V.

For any conservative system it can be shown from a variational principle,

�

∫
L = 0

that:4

d

dt

(
∂L

∂qi

)
− ∂L

∂qi

= 0,

where i = 1, 2, ..., 3N ; the qi are 3N position co-ordinates, and t is
time. This is the Lagrangian formulation of mechanics. For a system
of N particles in physical space, the above is a system of 3N second-
order differential equations. The Hamiltonian formulation of mechanics is
introduced because it provides a more powerful and versatile method than
the Lagrangian one. The Hamiltonian formulation is based on Hamilton’s

4 Conservative in the sense that the work done by a force moving an object from
point A to point B is independent of the path the object takes as it moves from A to B.
The gravitational and electric fields are conservative systems, whereas any system with
friction or air resistance is a non-conservative system.
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canonical equations of motion:

q̇i = dqi

dt
= ∂H

∂pi

,

ṗi = dpi

dt
= −∂H

∂qi

,

∂L

∂t
= −∂H

∂t
,

where again i = 1, 2, ..., 3N ; H is defined in terms of the Lagrangian L
using a Legendre transformation:

H(q, p, t) =
3N∑
i=1

piq̇i − L(q, q̇, t)

and the pi are 3N generalised momentum co-ordinates. The generalised
momentum co-ordinates can be obtained from the position co-ordinates
and the Lagrangian using the following equation:

pi = ∂L

∂q̇i

.

The space of the q and p co-ordinates specifying a physical system is
known as the phase space. The configuration space can be thought of
as the half of the phase space that contains the position co-ordinates
q. In the Hamiltonian formulation of mechanics, the dynamics of a
system are defined by the evolution of points, ‘trajectories’, in this phase
space–which has 6N dimensions. These trajectories are defined by a
vector field v(q, p) in the phase space which can be formulated in terms
of the Hamiltonian, H :

v(q, p) =
3N∑
i=1

∂H

∂pi

· ei −
6N∑

i=3N+1

∂H

∂qi−3N

· ei,

where the ei are basis vectors for the phase space. This provides a
powerful method for analysing the dynamics of physical systems. For
a system of only one degree of freedom, that is, a single particle that can
only move along one direction, such a vector field may look something
like Figure 2. Each point in the phase space is a possible dynamical state
of the system and has a corresponding vector, which determines how the
system will evolve from that state. A possible evolution of our simple
hypothetical system is shown by the curve in Figure 2.

Now we are ready for Malament’s criticism of Field’s project.
Essentially, Malament’s concern is that Field cannot nominalise any
theory that makes use of such phase spaces. [Malament, 1980, p. 553]
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Fig. 2. A Hamiltonian vector field.

The problem is that not only are the points in phase space abstract entities,
but they also represent abstract entities, viz. possible dynamical states.
With Field’s primary example, Newtonian gravitation theory, the abstract
entities that the theory quantifies over represent physical entities, viz.
space-time points—something Field (who is a substantivalist) has no
qualms about—and so there is no problem. But there is a problem with
phase spaces, Malament writes:

[...] Even a generous nominalist like Field cannot feel entitled
to quantify over possible dynamical states. The point is
very simple. Suppose Field wants to give some physical
theory a nominalist reformulation. Further suppose the theory
determines a class of mathematical models, each of which
consists of a set of ‘points’ together with certain mathematical
structures defined on them. Field’s nominalization strategy
cannot be successful unless the objects represented by the
points are appropriately physical (or non-abstract). In the
case of classical field theories the represented objects are
space-time points or regions. So Field can argue, there is
no problem. But in lots of cases the represented objects are
abstract. In particular this is true in all ‘phase space’ theories.
[Malament, 1980, p. 533]

Field has shown how we can nominalise Newtonian space-time geometry
and speak nominalistically about scalar and vector fields over such a
geometry, but he has not shown how we can talk nominalistically about
phase spaces. And as Malament points out, it does not seem that a
nominalist account of phase spaces is even possible. Given that Field
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has shown how a nominalist account of the structure of flat space-
time is possible, it seems reasonable to assume that the same can in
fact be done for other space-times—such as ones with curvature—even
though it is not clear how this can be done. But phase spaces are a
completely different matter. They are clearly not like the manifolds we
use to represent space-times; points in phase spaces are abstract objects
that represent other abstract objects (possible dynamical states), whereas
the points in manifolds are abstract objects that represent other concrete
objects (points in space-time). So applying the kind of representation
theorems that Field employs to deal with Newtonian space-time clearly
will not do the trick.

The nominalist might claim, in response to Malament’s criticism,
that Hamiltonian formulations in phase spaces do not add any new
physics; they are just simply another way of expressing the same thing
that Field has shown can be nominalised. This is certainly true for
classical Hamiltonian mechanics, which was the object of Malament’s
first objection. But, as Malament goes on to stress, when we move to
theories such as quantum mechanics, where we use Hilbert spaces, this
reply no longer seems reasonable. There has been some work on giving
nominalist accounts for the structure of Hilbert spaces, but it is not clear
that this has been formally successful, and the works we have in mind
quantify over such objects as ‘physically real propensities’—which are
nominalistically suspicious to say the least. In any case, we will not focus
on such issues in this paper.5 We want to press the original Malament
objection a bit further. Let us grant that the nominalist response to
Malament is right; that is, we assume that phase-space theories do not
add any new physics to the picture, and so any physical law that can be
stated in terms of points in phase space has an equivalent nominalistic
counterpart. Even granting this, there is another important role that phase-
space theories play in science apart from their ability to provide a neat
expression of the relevant laws of physics; they play an explanatory role.

In the next section we will argue that phase spaces have explanatory
resources that their nominalised counterparts (whatever they may be)
do not share. This fact, coupled with the principle of inference to best
explanation, will result in an ontological commitment to mathematical
entities despite the (assumed) success of a Field-style nominalisation of
phase spaces.6

5 See [Balaguer, 1996] and [Bueno, 2003] for discussion on nominalising mechanics.
6 Though even without invoking inference to the best explanation, there are problems

for the nominalist, since the Platonist theory has greater explanatory power and thus
would seem to be the better theory.



8 LYON AND COLYVAN

3. Explanatory Power

Our argument will be by way of an example. We will look at an analysis
of a physical system using phase spaces that will give us an understanding
of that system which cannot obviously be obtained otherwise. The
physical system we will look at is known as the Hénon-Heiles system.
It was introduced in 1964 by Hénon and Heiles to describe the motion
of a star around a galactic centre, where that motion is restricted to the
plane.7 Put simply, the Hénon-Heiles system is a point particle moving
in the potential:

U(qx, qy) = 1

2
(q2

x + q2
y ) + qyq

2
x − 1

3
q3

y .

The Hamiltonian for the Hénon-Heiles system is then:

H = T + U

= 1

2
(p2

x + p2
y) + 1

2
(q2

x + q2
y ) + qyq

2
x − 1

3
q3

y ,

where we have set the conjugate momentum coordinates to: pi = dqi

dt
.

The equations of motion expressed in terms of the Hamiltonian are:

dqi

dt
= ∂H

∂pi

,

dpi

dt
= −∂H

∂qi

.

And from these we can obtain the equations of motion in terms of the
position coordinates qx and qy :

d2qy

dt2
= dpy

dt
= −∂H

∂qy

= −qy − q2
x + q2

y ,

d2qx

dt2
= dpx

dt
= −∂H

∂qx

= −qx − 2qxqy.

Now we have two options. We can either look at the evolution of the
position coordinates in the qx-qy plane, or we can look at the evolution
of the dynamic states in the phase space. A slight complication arises
for this second option because the phase space is actually 4-dimensional,
i.e., points in the phase space, are represented by quadruples of the form:
(qx, qy, px, py). So if we are to analyse the system using the phase space

7 For a more detailed analysis, see [Lichtenberg and Lieberman, 1992, pp. 46–50],
or [Hénon and Heiles, 1964].
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we need to look at a plane that cuts through the phase space and study
the motion via the induced Poincaré map.

The Poincaré map for the system comes about when we take a plane
that cuts through the space of solutions and look at how those solutions
pass through the plane. When a solution passes through the plane we
can think of it as making a ‘dot’ on the plane. The solution then ‘flies’
around until it passes through the plane again, where it makes another
‘dot’—and it continues to do this forever, passing through the plane over
and over again, each time making another ‘dot’. The Poincaré map is
the function that maps the first ‘dot’ on to the second ‘dot’, on to the
third ‘dot’, and so on. Depending on the nature of the system, any given
solution may pass through the plane in many different places causing
many different ‘dots’. All solutions will pass through the plane an infinite
number of times, but some solutions will only pass through the plane in
a few different spots—such solutions are periodic. Solutions that never
pass through the same arbitrarily small neighborhood of a point twice
are chaotic.8

An illustration of how the Poincaré map works for the Hénon-Heiles
system is in Figures 3 and 4. Firstly, we fix the total energy of the system
to be a constant, E, so that our problem is reduced to three degrees of
freedom:

E = 1

2
(p2

x + p2
y) + 1

2
(q2

x + q2
y ) + qyq

2
x − 1

3
q3

y .

E is then a parameter of the system which we can vary. We then look at
a particular plane in the phase space and investigate how the solutions
pass through it. Figure 3 shows a particular solution of the system in the
qy-qx plane; this corresponds to the path the star takes as it moves about
the galactic centre. Figure 4 shows the same solution in the qy-py-qx

volume as it passes through the (qx = 0) plane.
To state this a little more formally, we take a 2-dimensional cross

section of the phase space: �, and define the Poincaré map: ρ : � → �
such that ρ(x) = �τ(x), where � is the trajectory and τ(x) = min{t ∈
R : t > 0,�τ (x) ∈ �} is the first time point when the trajectory passes
through � again.

By investigating how the solutions pass through the plane, we can
obtain a great deal of information about the physical system in question;
information which is not obviously obtainable otherwise. This is the
important point for the purposes of this paper because it suggests that
the phase-space analysis has explanatory resources that the Lagrangian

8 There are more complicated ways of classifying the types of possible solutions, but
this will suffice for the purposes of this paper. See [Lichtenberg and Lieberman, 1992,
pp. 42–46] for more on the different kinds of possible solutions.
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Fig. 3. A solution to the Hénon-Heiles system in the qy -qx plane.

Fig. 4. A solution to the Hénon-Heiles system in the qy -py -qx volume.
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analysis lacks. If this is correct, then there is a problem for Field, since
science-with-numbers, it would seem, is more explanatory than science-
without-numbers.

The phase space can give us a lot of information about the Hénon-
Heiles system when we consider sets of possible dynamical states of the
system for given particular energy levels. The explanandum that we will
use the phase-space analysis to explain is that high-energy Hénon-Heiles
systems tend to exhibit chaotic and unpredictable motion, and low-energy
Hénon-Heiles systems tend to exhibit regular and predictable motion.
Using the Poincaré map we can find, given a particular energy level
of the system, what circumstances will give rise to regular motion and
which ones give rise to chaotic motion. For example, if the total energy
is set to E = 1/8 we get the Poincaré map on the (qx = 0) plane pictured
in Figure 5. This tells us which states of the system give rise to regular
motion and which ones give rise to chaotic motion. A dynamic state gives
rise to chaotic motion if a nearby state is mapped arbitrarily far away at
some later time. So for example, if the system is ever anywhere near the
dynamic state (qx = 0, qy = 0.21, px = 0.32, py = −0.33), we know
that the motion will be chaotic and unpredictable. Figure 5 illustrates
how two points near this dynamic state get mapped away from each
other. A dynamic state that gives rise to regular motion will have the
property such that nearby dynamic states will stay close to it as they get
mapped around the plane.

Something else we can discover about the system by studying the
phase space is how the regions of possible dynamical states that give
rise to chaotic motion change as the total energy of the system changes.
For example, for the Hénon-Heiles system, we know from the Poincaré
map that for high energies chaotic motion prevails, and as we decrease
the total energy of the system, the regions of chaos shrink until there is
very little chaotic motion left and regular motion prevails (see Figure 6
for an illustration).9

From this we can state some general results:

• All galactic systems that can be modeled by the Hénon-Heiles system
with low energies tend to exhibit regular and predictable motion;

• All galactic systems that can be modeled by the Hénon-Heiles system
with high energies tend to exhibit chaotic and unpredictable motion.

9 This can be shown more formally using Liapounov exponents but such an analysis
would take us too far afield. A computer-generated pictorial analysis will suffice for our
purposes.
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Fig. 5. Two nearby chaotic dynamic states are mapped away from each
other.

So the theory of phase spaces, Poincaré maps, and differential equations
explain why high-energy Hénon-Heiles systems exhibit chaotic and pre-
dictable motion and why low-energy ones exhibit regular and predictable
motion. These are explanations that can be obtained from an analysis of
the system using its phase space, but which cannot be obtained other-
wise—at least it is not obvious how such explanations could be obtained
otherwise.

We mentioned earlier that we had two options for our analysis. Instead
of studying the phase space, we could look at the various paths in the
qy-qx plane that the star can take for different energy levels. But such
an analysis would be extremely tedious (to say the least) and this just
does not give us the same kind of understanding as the phase-space
analysis does. The explanatory power is in the structure of the phase
space and the Poincaré map. So it seems that this is a case where using
the phase space is essential to our understanding and ability to explain
certain features of the world. Non-linear systems like the Hénon-Heiles
system are abundant in the world, and our only tools for analysis of
these systems are our theories of phase spaces and Poincaré maps. So
even though the nominalist can translate all talk about phase spaces into
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Fig. 6. For high energy (E = 1/6), nearly all of the dynamic states are chaotic. As the energy
decreases (E = 1/8 → E = 1/14) the regions of chaotic dynamic states shrink, until nearly all

dynamic states are regular and predictable (E = 1/16).



14 LYON AND COLYVAN

talk about space-time points, there is loss of explanatory power in the
process.10

4. Conclusion

It is by no means uncontroversial that mathematics can play an
explanatory role in science, and even if there are good candidates for
mathematical explanation (where that explanation is the best one for
the phenomena to be explained), they do not immediately force one to
be ontologically committed to mathematical entities. For an example of
mathematical explanation to be of the ontologically committing type,
there must be no matching nominalist explanation. For example, as
we saw previously, the mathematical part of the explanation for the
hexagonal structure of the hive-bee honeycomb comes from the proof of
the honeycomb conjecture—a result in geometry and topology. But Field
has shown how we can speak nominalistically about the geometry of
(Newtonian) space-time, and so it seems likely that a similar result could
be proven in his system. If this is possible, then any explanation involving
the nominalist form of the honeycomb conjecture would arguably be at
least as good as the original form of explanation presented earlier. In fact,
it might be argued that such a nominalistic explanation is better than the
Platonist one, since the former, but not the latter, would be intrinsic.
That is, with the nominalist explanation one is ‘able to explain the
behaviour of the physical system in terms of the intrinsic features of that
system, without invoking extrinsic entities (whether non-mathematical or
mathematical) whose properties are irrelevant to the behaviour of the
system being explained’. ([Field, 1989, p. 193], emphasis original).

The example of the Hénon-Heiles system, however, is different. The
force behind this example is that, as Malament points out, it seems highly
unlikely that Field can provide a nominalist account for the structure
of phase spaces. Or at least nothing in Field’s treatment of space-time
indicates how phase spaces would be nominalised. Since he cannot do
this, he does not have recourse to the tools of analysis built upon phase
spaces such as the Poincaré map. Our example also illustrates that we
do not have to move to branches of science such as quantum mechanics
to raise difficulties for Field; classical mechanics is difficult enough. If
there is a way that Field can find a matching nominalistic explanation, it
might only be through an analysis of each solution in the qy-qx plane, but
such an explanation would be, at best, extremely piecemeal. For such an

10 The loss of explanatory power in alternative mathematical formulations of a theory
may be more widespread. Mark Steiner [1978c] argues that the explanatory power of the
concept of a complex number (understood as a vector in R

2) is not preserved under the
ordered-pair formulation of complex numbers.
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explanation to work, large classes of solutions would have to be analysed
individually in the qy-qx plane for a whole range of different energy
levels, and even then it is not clear that this would help. To explain
why unpredictable motion is more likely for higher-energy levels, the
nominalist must either determine whether or not each solution is chaotic
(which may still implicitly require using properties of the phase space) or
show that all nearby solutions diverge from it. So it would seem that all
the solutions analysed would have to be compared pairwise, making the
explanation so piecemeal that one wonders whether it would still count
as an explanation.

Another possible move that a Field-style nominalist might make is
simply to restrict the class of explanations that are ontologically relevant
to causal ones—that is, to make the principle of inference to the best
explanation only apply to the best causal explanation. Since mathematical
entities are acausal, mathematical explanations, even if there are genuine
examples of them, do not have an impact on one’s ontology. Indeed this
is something Field briefly entertains, though he notes that such a position
is a delicate one to maintain [Field, 1989, pp. 19–20]. It would also seem
to be question-begging in the context of this debate. Indeed, a great deal
of the appeal of Field’s nominalist program is that he tackles the issues
in question head on and does not beg important questions such as this.
A restriction of inference to the best explanation to exclude non-causal
explanations would undermine much of the appeal of Field’s project, not
to mention render a great deal of it obsolete.11

Our response to this is to agree that in order for the mathematical
explanation to be an explanation of empirical facts, some appropriate
bridge principles are required. But this does not mean that the math-
ematical explanation is restricted to pure mathematics. Yes, there is a
great deal of work being done by the bridge principles in order for the
mathematical explanations to be explanations of physical facts, and there
is a great deal to be said about the nature and adequacy of these bridge
principles, but this does not reduce the importance of the mathemati-
cal explanation in question. Indeed, the bridge principles in question are
mappings between physical systems and mathematical structures, and so
are themselves mathematical entities (i.e., mappings). If the nominalist
hopes to defuse the situation by having the bridge principles shoulder
some of the explanatory load, this seems a poor way to proceed. First,
these bridge principles do not seem to do anything more than allow the
transmission of the mathematical explanations to the empirical domain.
And, secondly, as we have already pointed out, the bridge principles are

11 If a nominalist restricted inference to the best explanation to the narrower inference
to the best causal explanation, much of the hard work of nominalising physical theories
would be unnecessary: acausal mathematical entities would be ruled out from the start.
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themselves pieces of mathematics. We can put the point this way: we have
provided a mathematical explanation of the behaviour of certain physical
systems, and although this explanation requires appropriate bridge prin-
ciples, no alternative non-mathematical explanation is on offer. The latter
is what the nominalist requires. Pointing out that the mathematics only
explains the behaviour of the physical system once appropriate bridge
principles have been specified is true but irrelevant.

To sum up. Given that no satisfactory nominalisation of phase spaces
is forthcoming, and given that such theories are employed extensively in
many branches of modern science, there would appear to be a problem
here for a Field-style nominalisation program. That was Malament’s
largely overlooked objection to Field’s program. This objection strikes
us as a good one, despite the possibility of nominalising the theories in
question via their Lagrangian formulations. We have pushed the point
further, arguing that even if nominalisation via this route is possible, the
resulting theory is likely to be less explanatory; there is explanatory
power in phase-space formulations of theories, and this explanatory
power does not seem recoverable in alternative formulations.
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