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From Kolmogorov, to Popper, to
Rényi: There’s No Escaping
Humphreys’ Paradox (When
Generalized)

Aidan Lyon

6.1 Introduction

Humphreys' Paradox is often taken to be a serious challenge for the propensity inter-
pretation of probability; it’s one of Eagle’s (2004: 21) arguments against propensity
analyses of probability.’ The conclusion that is typically drawn from the paradox
is that the propensity interpretation does not satisfy ‘the’ probability axioms—i.e.
Kolmogorov’s axioms—and so the propensity interpretation must go (e.g. Salmon,
1984). Humphreys himself, in contrast, thought that it's Kolmogotov’s probability
axioms that ought to go (Humphreys, 1985: 569-70). This would involve replacing
Kolmogorov’s axiom system with some other. However, Humphreys offers no repla-
cements, and, as far as I can tell, the subsequent literature has not either.

One might think that a promising alternative would be Popper’s axiom system.
However, | argue that Popper’s axioms fare no better than Kolmorgov’s. Interestingly,

though, Popper’s axioms were inspired by Rényi’s (1955) axioms, and it turns out

Thanks to Kenny Easwaran, Alan Hajek, Christopher Hitchcock, Joel Velasco, Alastair Wilson, an

anonymous referee, and the audience at the Chance and Time conference at Monash University for helpful

comments and discussion.

versions of the propensity interpretation—some of which some authors
have argued do not suffer from the paradox (e.g. Gillies (2000))—I specifically have in mind here the
classic, single-case, causal dispositional versions of the propensity interpretation, Moreover, I'm restricting
my attention to those propensity interpretations that understand P(A|B) = x as the statement that there is
a propensity of strength x for B to produce or bring about A. This is what I take, for example, Popper t0
have in mind when he writes: ‘we can say that the singular event a possesses a probability p(a, b) owing t0

1 Although there are different

the fact that it is an event produced, ot selected, in accordance with the generating conditions b (Poppes

1959b: 34).
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that propensity theorists can avoid Humphreys’ Paradox by adopting Rényi’s axiom
system. This move also allows propensity theorists to avoid some closely related
problems that they would otherwise face. Unfortunately, these problems, along with
Humphreys’ Paradox, are all just special cases of a much more general problem, from
which Rényi’s axioms provide no safe havei.

I'll begin, in §6.2, by introducing the details of Humphreys’ Paradox. At least four
versions of the paradox have appeared in the literature and it will be important to
distinguish them from one another. In §6.3, I'll argue that all of the versions of the
paradox arise in Popper’s axiom system, but one of them doesn’t arise in Rényi’s, In
§6.4, I'll introduce Milne’s Problem (Milne, 1985), and show that it has at least three
variants—all of which are analogous to three of the four versions of Humphreys’
Paradox. I'll argue that one of the versions of Milne’s Problem also doesn’t arise in
Rényi’s axiom system. Similarly, I’ll argue that a problem due to Sober, (2010) can be
avoided by adopting Rényi’s axioms. However, Sober’s problem points the way to a
much more general problem, and, in §6.6, I'l] argue that this more general problem
cannot be solved by adopting Rényi’s axioms.

6.2 Humphreys’ Paradox

In addition to the original paradox (Humphreys, 1985), two other versions of the
paradox have appeared in the literature—and are discussed in Humphreys (2004).
In this section, I'll describe these three different versions of the paradox. After doing
so, I'll present a fourth version, which has not yet been explicitly identified in the
literature,

First, the original paradox. Suppose we have some photons being emitted from a
source at time #. Some of these photons then impinge on a half-silvered mirror at
time 1. Some of the photons that make it to the mirror are then transmitted through
it. Whether a particular photon makes it to the mirror is an indeterministic and
probabilistic matter; so too is whether it then gets transmitted or reflected. Let I,
be the event of a particular photon impinging on the mirror at #;. Let T}, be the event
of that photon being transmitted through the mirror at the later time . Finally,
let By, be the background conditions in place at t) which include the fact that the
photon was emitted from the source at . Thus defined, the events have the following
probabilistic constraints:

(i) PTIU(T),‘QIIHBI()):_P>O
(iil) Pf‘m(ngl'—'Iti Bm) =0

The parameters p and g can take any values within the above constraints and
once fixed are to be interpreted as propensity values. It is also assumed that the
Propensity for the particle to impinge upon the mirror is unaffected by whether the
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particle is later transmitted or not. Humphreys calls this the Principle of Conditional
Independence (CI), and formulates it as follows:

(Cl) PT’;O (Iﬂ ththU) = Pftu(I]L"'thBm) = Prt()(fh lBt())

From these premises and the Kolmogorov axioms of probability, a contradiction can

be derived. Using Bayes’ Theorem:*
Pry ( Toy Tty Bip ) Prio (I | B
Pri, (I | T By) = ey (Tp | Iy 1) Prio (I | )
PTtO(thlItl BtO)PrtO(Ifi |Btu} + Prl'D(th]—'It} Btﬂ)Prf(](_‘Ih lBto)

o P
pq+0
=1

But from Cl:
Pry,(In| TuBy) =4 < 1
which contradicts the value of Pry (In |T;, By,) obtained from Bayes’ Theorem.

That is the original paradox. Two other closely related paradoxes have been
discussed in the literature. They arise when ClI is replaced with alternative principles.
The first alternative principle has been called the Fixity Principle (F) (Humphreys,
2004: 670; first presented by Milne, 1985), and states that:

(F)PT;U(IH lTlZBft)) =1lor me(fﬂ th’leG) =0

The idea behind this principle is that once has occurred, I, has already occurred or
not occurred—and since the past is fixed, this matter cannot change. The principle as
formulated as above doesn’t quite capture this idea, though. Presumably part of the
intuition is that the value of Pry (I | T, By,) depends on whether I, actually occurs.
So, a better way of capturing the relevant intuition might be:

(F!) IfIh, then PT:U (Iﬁ |Tt2 Bm} =1and if"‘IQ, then Prto(Itl inz Bm) =0

then Pry(In|1TyBy) = 0 which contradicts the

If I, doesn't actually occur,
rem (which applies regardless of whether I

assignment obtained from Bayes’ Theo

actually occurs).
The second alternative principle, which has been called the Zero Influence Principle

(Z1) (Humphreys, 2004: 670), states that:
(Z1) Pryy (I | Ty By ) =0 (6.1)

This assignment is clearly inconsistent with the assignment obtained from Bayes
Theorem. The idea behind ZI is that the event Ty, has no propensity to produce
I, since if it occurs, it occurs after I, . However, no propensity’ can be ambiguous
between ‘zero propensity’ and literally ‘no propensity—i.e., the absence of 2

2 McCurdy (1996: p. 1 16) argues that Bayes’ Theorem, or any other inversion theorem, is not needed to
be derived from the arrangement of the system. Howeveh

arrive at this value, since Priy Iy | Tt, Brg )y=1can
Humphreys (2004: 674) appears to deny this point. This detail does not matter for my purposes here, for

there is a violation of Kolmogorov's axioms either way.




ciple of Conditional

By)

a contradiction can

0)Prig(~Iy |Bo)

ses’ Theorem.

aradoxes have been
lternative principles.
sle (F) (Humphreys,

J

s already occurred or
inge. The principle as
esumably part of the
er I, actually occurs.

{Itl |Tt':'.B‘U) =0

hich contradicts the
ardless of whether Iy

ero Influence Principle

(6.)

obtained from Bayes
sropensity to produce
ity’ can be ambiguous
., the absence of 2

on theorem, is not needed to
nent of the system. However,
er for my purposes here, for

THERE’S NO ESCAPING HUMPHREYS’ PARADOX 115

propensity of any strength. This suggests a fourth principle: the No Propensity
principle (NP):3

(NP) Pry, (I | Ty, By, ) is undefined (6.2)

NP is clearly inconsistent with the assignment obtained from Bayes’ Theorem,
since NP says there is no assignment and Bayes’ Theorem says there is. Salmon’s
presentation of the problem—one of the first—seems to be along these lines:

‘If numerical values are given, we can calculate the propensity of [a] factory to produce
defective corkscrews. So far, so good. Now, suppose an inspector picks one corkscrew from
the day’s output and finds it defective. Using Bayes’ theorem we can calculate the probability
that the defective corkscrew was produced by the new machine, but it would hardly be reaso-
nable to speak of the propensity of that corkscrew to have been produced by the new machine.
(Salmon, 1984: 88),

So we have four paradoxes, each stemming from one of the principles CI, F/F/, ZI,
and NP combined with (i)—(iii) and Bayes’ Theorem.*

Before moving on, it’s worth noting that CI, F}, ZI, and NP are pairwise inconsistent
when combined with (i)—(iii)—and in some cases, even when not combined with (i)-
(iii). NP clearly contradicts CI, F/, and ZI, since it says Pry (I, | Ty, By, ) is not defined
and they all assume it is. ZI contradicts F* since ZI says that Pry (I, | Ty, By) = 0
regardless of whether I, occurs. (ZI is not inconsistent with F, but it does seem
to be inconsistent with the motivation behind F.) ZI also contradicts CI combined
with (ii) since from ZI we have Pryy(Iy| Ty, By) = 0 and putting that into CI we
get Pry (I |By) = 0, which contradicts (ii). Similarly, both F and F’ contradict CI
combined with (ii).

Since (i)-(iii) are not up for debate, and the probability axioms are typically not up
for debate, it seems that the blame for all of these contradictions ought to be placed
on the principles. Not all of them can be true, but it's not entirely clear which ones
are false, and all four principles have some intuitive force behind them.

6.3 Changing the Axioms

The literature typically sees Humphreys’ Paradox as a problem for propensity inter-
pretations of probability (see e.g. Eagle, 2004: 402). However, Humphreys himself
thought that the paradox spells trouble for the standard probability axioms:

Ttis time, I believe, to give up the criterion of admissibility [the criterion that an interpretation
of probability should satisfy the standard probability calculus]. We have seen that it places an
unreasonable demand upon one plausible construal of propensities, Add to this the facts that

? Humphreys notes that there is a difference between a propensity not existing and having a value of
zero (2004: 671 n. 7), but nevertheless does not discuss NP,
4 Actually, since the principles are inconsistent with each other and different intuitions motivate them,

it’s probably better to say that we have four arguments, each of which is a paradox only for those that have
the relevant intuitions.
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limiting relative frequencies violate the axiom of countable additivity and that their proba-
bility spaces are not sigma-fields unless further constraints are added; that rational degrees of
belief, according to some accounts, are not and cannot sensibly be required to be countably
additive; and that there is serious doubt as to whether the traditional theory of probability is
the correct account for use in quantum theory. Then the project of constraining semantics by
syntax begins to look quite implausible in this area (Humphreys, 1985: 569-70).

Humphreys’ conclusion is that we should not be beholden to Kolmogorov’s axiom
system, and that which axiom system we adopt should be sensitive to our interpre-
tation of probability. Propensity theorists would be well advised to find an axiom
system that is suited to their interpretation.

Interestingly, Poppet, who was a propensity theorist, developed his own axiom
system as an alternative to Kolmorogov’s. Popper had several motivations for doing
50, but one of them was that he felt that an axiom system should not rule out possible

probability interpretations:>

‘In view of the fact that a probability statement such as ‘p(a,b) =" can be interpreted in many
ways, it appeared to me desirable to construct a purely ‘formal’ or ‘abstract’ or ‘autonomous’
system, in the sense that its ‘elements’ ... can be interpreted in many ways, so that we are not

bound to any particular one of these interpretations. ...
There are three main characteristics which distinguish a theory of this kind from others. (i)

It is formal; that is to say, it does not assume any particular interpretation, although allowing
for at least all known interpretations. ..." (Popper, 1959a: 329-30).

One of the defects of Kolmogorov’s system, Popper argued, was that it ruled out some
interpretations of probability. Since Popper was a propensity theorist and also clearly
sympathetic to Humphreys™ proposal that probability syntax shouldn’t constraint
probability semantics, we might expect that Popper’s propensity interpretation would
be a possible interpretation of his own axiom system.

Somewhat ironically, this is not the case. As Humphreys notes, his paradox can be
generated within Popper’s axiom system (Humphreys, 1985: 559-60). Indeed, this is
true not just for the version of the paradox based on CI, but also for the versions
based on F/F, ZI, and NP. The reason why it is true for the versions of the paradox
based on F/F' and ZI is pretty straightforward: the inversion theorems of Popper’s
axiom system can determine probability values that contradict F/F and ZL

The reason why the NP-version of the paradox arises is the same as before and
straightforward too: Popper’s axiom system guarantees the existence of ‘inverse
conditional probabilities. However, the reason why Popper’s axiom system has this
property is more interesting. In addition to an axiom system not ruling out possible
probability interpretations, Popper also thought that it was a virtue for an axiom
system to be what he called symmetrical. In continuation of the previous quote, he

writes:

5 He expresses the same sentiment in many other places—e.g. Popper, 1938: 275; 1955: 51.
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(iii) It is symmetrical; that is to say, it is so constructed that whenever there is a probability
p(b,a)—i.e. a probability of b given a—then there is always a probability p(a,b) also—even
when the absolute probability of b, p(b), equals zero; that is, even when p(b) = p(b,aa) = 0.
(Popper, 1959a: 330).

It is this condition of being symmetrical that guarantees that Popper’s axiom system
suffers from the NP-version of Humphreys' Paradox.

Popper seems to have been inspired by the development of another alternative
axiom system, due to Rényi (1955):

I have received considerable encouragement from reading A. Rényi’s most interesting paper
‘On a New Axiomatic Theory of Probability, Acta Mathematica Acad. Scient. Hungaricae 6,
1955, pp. 286-335. Although I had realized for years that Kolmogorov’s system ought to be
relativized, and although I had on several occasions pointed out some of the mathematical
advantages of a relativized system, I only learned from Rényi’s paper how fertile this relativi-
zation could be. The relative systems published by me since 1955 are more general still than

Rényi’s system which, like Kolmogorov’s, is set-theoretical, and non-symmetrical ...” (Popper,
1959a: 352).

Popper thought that Rényi’s axiom system was a great step forward (away from
Kolmogorov), but that it still had the defects of being set-theoretical and non-
symmetrical. Since it is the symmetry of Popper’s system that results in the NP-
version of Humphreys’ Paradox, we might expect, then, that the asymmetry of Rényi’s
axiom system allows it to avoid this version of the paradox.

This is, in fact, the case. Rényi’s axiom system allows for Pr(A|B) to be defined and
Pr(B|A) to be undefined. This is because Pr is defined over an algebra A crossed with
asubset B, i.e., Pr: A x B— R. Since B only has to be a subset of A, some elements
of A need not appear in B. So if A and B are in A, but only B is in B, then Pr(A|B)
gets a value and Pr(B|A) does’t. This feature of the axiom system blocks the NP-
version of Humphreys’ Paradox, since By, Iy, Ty, can all be in A, but only By, and
Iy need be in B, which means, for example, Pry,(Ty, |l By,) can be defined without
Pry, (11| Ty, By, ) having to be defined—in agreement with NP.

However, the paradoxes based on CIL, F/F, and ZI still go through. This is because
the statements of CI, F/F/, and ZI all involve the inverse conditional probabilitiy
Pry (I | Ty, By, ), and so for them to be true, B must include Ty, By, as an element. If
T,, By, is in B, then there are instances of the Multiplication Rule and Bayes’ Theorem
that involve Pry (I | Ty, By,), and the derivation of the paradoxes based on CI, F/F’
and ZI go through.

The debate over which of CI, F/F, ZI, and NP is true now looms large. We have
a reasonably standard probability axiom system with independent motivation that
doesn’t result in a paradox if NP is true. It seems, therefore, that a propensity theorist
would be well advised to accept NP (thereby rejecting CI, F/F/, and ZI) and Rényi’s
axiom system, For what it’s worth, it seems that NP is something a propensity theorist
should say anyway: propensities are causal dispositions and there are no ‘backwards’
causal dispositions.
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6.4 Milne’s Problem

I have argued that the propensity theorist can solve Humphreys’ Paradox by adopting
Renyi’s axiomatization of probability and the idea that there are no backwards
propensities. I'll now argue that this move (when slightly tweaked) also solves a
closely related problem for the propensity theorist: Milne’s Problem. However, just
as with Humphreys’ Paradox, there is more than one version of Milne’s Problem.
Consider the following example:
Let us consider an unbiased die in an indeterministic universe in which the real single-case
probabilities have their familiar values. If a denotes the outcome ‘6’—uppermost, and b denotes
the event ‘even number’~uppermost, then p(a) = 1/6, p(b) = 1/2 and, by definition, p(alb) =
1/3. How is p(alb) to be interpreted? It is certainly not the probability that the outcome a is
realised given that the outcome b has been realised, for if b has been realised exactly one of the
events ‘2-uppermost, ‘4’~uppermost, or ‘6’'-uppermost has occurred. In the first two cases a’s
occurrence is impossible, in the third it is certain. The event bis realised by the occurrence of a
or of an event incompatible with a. It is the realisation of @ or one of these other events which
constitutes the occurrence of b. In terms of real single—case probabilities, when b occurs there is
no longer any matter of chance, no indeterminacy, about @’s occurrence, it is fully determinate,
(Milne, 1985: 130).
In our notation, we can describe the example as follows. A fair die is rolled at ty. Let
By, be the background conditions at to, which include the event of the beginning of
this roll, and also suppose that the roll of the die has various propensities to produce
events at #,. For example, the propensity for the role to produce ‘six’ is:

Prm(Sixn th) = 1/6
Similarly, the five other possible outcomes have propensities of strength 1/6 to occut.
This probability distribution and the (Kolmogorov) probability axioms together
entail that:
Prfo (Sixh |EV€H11 Bf(}) = 1/3
where Even is equivalent to Two or Four or Six. However, this conditional probability
is inconsistent with the following principle:
(F*)Pryy (Sixy, | Eveny, By, ) = 1 or Pry, (Sixy, | Eveny, By, ) = 0,

which we may call the fixity of simultaneous events.
Of course, stating F* explicitly like this makes it clear that there is an analogy here

with F—indeed I have extracted them both from Milne’s paper, and they seem to be
motivated by the more general principle:
[T]he occurrence of the conditioning event does not determine the occurrence or otherwise of

the conditioned event. What makes the probabilities 0 or 1 is that the occurrence or otherwise
of the conditioned event is determinate before or concurrently with the occurrence of the

condition. (Milne, 1985: 131).

However, there are also analogues of ZI and NP that may seem equally or more
intuitive and which also result in probability assignments that are inconsistent with
Pf’m (Sixtl |E‘V€ﬂn Bm) = 1/3.
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For example, one may reason that even if Six;, does occur, it is not because of
any causal efficacy of Eveny: Even,, has zero dispositional strength in bringing Six;,
about. Put another way, Even,, has ‘zero influence’ on Sixy, :

(Z1*) Pryy (Sixy, | Eveny Byy) = 0.

regardless of whether Six; occurs. This, of course, is no help to the propensity
theorist, for ZI* is also inconsistent with Pryy (Sixy, | Eveny, By,) = 1/3.

Another intuition one may have is that since Sixy, and Even,, must be simultaneous
if they both occur, then there can be no causal relation between them, and so no
propensity for either to bring the other about. This is an analogue of NP:

(NP*) Pry,(Sixy | Eveny, By,) is undefined.

That is, there simply isn’t a propensity for Eveny to produce Six,, not even one
of zero strength. NP* is also inconsistent with Pry (Six;, | Eveny, By) = 1/3, so the
propensity theorist with the NP* intuition is also in trouble,

However, it is only this last principle, when coupled with Renyi’s axiomatization
of probability that allows the propensity theorist to escape unscathed. This is because
Renyi’s axiom system allows Pry(Six;,|Eveny B,) to not be defined, even when
conditional probabilities such as Pry, (Sixy, | By,) and Pry,(Eveny, | By, ) are.

At this point, one may protest: although Renyi’s axiom system does not require
that Pry, (Six;, | Even, By,) be defined, it nevertheless should be, for we so clearly and
intuitively know it’s value: 1/3. It seems that there is a deeper problem with the
propensity interpretation of probability. Forget worries about whether it satisfies this
or that axiom system, the real problem is that the interpretation doesn’t satisfy a basic
platitude about the die: the probability of six given even is 1/3, not ‘undefined’

Is this bad news for the propensity interpretation of probability? No; T think it’s bad
news for probability interpretation monism: the view that there is one interpretation
for all probability statements. A small degree of pluralism—a degree of pluralism that
almost all philosophers of probability already have—can solve the problem.

Most philosophers of probability agree that along with the notion of objective
probability, there is the notion of subjective probability—a.k.a. degree of belief, or
credence. For example, Lewis said that both concepts are required for the proper
understanding of science:

We subjectivists conceive of probability as the measure of reasonable partial belief. But we
need not make war against other conceptions of probability, declaring that where subjective
credence leaves off, there nonsense begins. Along with subjective credence we should believe
also in objective chance. The practice and the analysis of science require both concepts. Neither
can replace the other. Among the propositions that deserve our credece we find, for instance,
the proposition that ... any tritium atom that now exists has a certain chance of decaying

within a year, Why should we subjectivists be less able than other folk to make sense of that?
(Lewis, 1986: 83).
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Indeed, Lewis sought to connect the two via what he called the Principal Principle
(which T'll explain shortly). It this connection between chance and credence that
solves the problem for the propensity theorist.

Roughly speaking, the intuition behind the Principal Principle is that if you know
the chance of some proposition and you have no other information relevant to that
proposition, then your credence in the proposition should be equal to the chance
of the proposition. Formally, if Cr is a reasonable initial credence function, and
Chy(A) = x is the proposition that the chance of A at time £ is X, then:

Cr(A|Ch(A) =x A E)y=%
where E is any admissible proposition (roughly, any proposition irrelevant to A). We
can use the Principal Principle to understand ‘the probability’ of six given on a fair
roll of a die: it is a credence that is grounded in certain objective chances, via the
Principal Principle.

A propensity theorist understands the chance of A at time ¢ as the propensity of A

to be produced by some set of background conditions at time t. That is:
Cht(A) ‘= Pry (AlBt)
From Milne’s example of the roll of the fair die, we have:
P?‘;O(Sixfl iBm} = 1/6
Pry, (Eveny, |By) = 1/2.
1f we plug these into the Principal Principle, we get:
CT(SiJCtl |Prta(5ixn \Bm) = 1/6 N Pr,o(Evenrl ‘Bﬂ)) = 1/2) = 1/6
Cr(Eveny, | Pry, (Sixq |By,) = 1/6 A Pryy(Eventy |B,) =1/2)=1/2
From here on, I'll abbreviate “Pry, (Sixy, | By) = /6 A Pry,(Eveny |By) = 1/2) = 1/6" as
simply K. So we have Cr(Six; |K) =16 and Cr(Eveny, |K) = 1/2.

The Principal Principle is meant to be a rationality constraint on credences.
Another is Bayesian Conditionalization, which (roughly) says that when we learn
some proposition K, our new credence function should be our old credence function
conditional on K:

Cre(—)=Cr(— 1K)

In reasoning about the fair die, we therefore ought to conditionalize on our
knowledge of the chances associated with the die. So, by Bayesian Conditionalization,
we get:

Cri(Sixy ) =1/6

Cry(Eveny ) =1/2
Another plausible rationality constraint on our credences is one on our conditional
credences:

Cr(A|B) = Cr(AA B)/Cr(B), if Cr(B) > 0
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So from this principle, we have:
Crx (Six, | Eveny, ) = Cri(Sixy, A Eveny)/Crg (Eveny)

One final intuitive rationality constraint on credences: if A entails B then Cr(AA B) =
Cr(A). From this, we get:

Cric(Sixy, | Eveny, ) = Cri(Sixy, A Eveny, )/ Cri (Eveny )
=(1/6)/(1/2)
=1/3

So from our knowledge of the chances/propensities of the die, and some intuitive
rationality constraints on credences, we see that our probability of six given even
ought to be one-third.

[ submit that, in Milne’s example, propensity theorists should understand ‘the
probability’ of six given even as a rationally constrained credence function of an
agent who understands the set-up of the roll. This allows us to use the full resources
of standard axiomatizations of probability without thereby committing ourselves
(as propensity theorists) to understanding all such probabilities as propensities. In
short, the probability axioms that capture the rationality constraints on credences
are different to the probability axioms that circumscribe propensities, but neverth-
eless there is a connection between credences and propensities (e.g. the Principal
Principle).

One common obstacle to understanding a probability statement as a statement
of credence is that, if the probability statement has some objectivity to it, then it’s
hard to account for that objectivity with a subjective credence function. For example,
attempts to understand the probabilities of statistical mechanics as credences quickly
run into the problem of determining a unique and objective prior that all rational
agents must have (see e.g. Jaynes, 2003). However, my proposal for understanding
‘the probability’ of six given even as a rationally constrained credence function of
an agent who understands the set-up of the roll doesn’t suffer from this problem.
My proposal does not require a unique objective prior. It only requires some very
plausible rationality constraints on credences and knowledge of the set-up of roll of
the die by some (possibly hypothetical) rational agent.

6.5 Sober’s Problem

Humphreys’ Paradox is said to a serious problem for causal propensity interpreta-
tions of probability, e.g.:

This problem is devastating for views that take propensities to involve weakened or inter-
mittent causation. This is because causation fails simple inversion theorems of the probability
calculus. (Eagle, 2004: 36).

6 Similar reasoning can be applied to other examples, such as the one in Humphreys’ Paradox.
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"Humphreys’s paradox’ is ... the basis for one of the most fundamental criticisms of the bu
propensity interpretation of probability. (McCurdy, 1996: 105). of

And the root of the problem is often attributed to a mismatch between the temporal 2K
asymmetry of propensities and symmetry of probabilities: th‘:
[Tlhere is an asymmetry in propensities as causes that is not present in probability; so Pro
probabilities cannot be propensities. thir
The point is simple: the interpretation of probability should not require actual backwards -
causation for every well defined inverse probability! (Eagle, 2004: 37). i
The essence of the issue can easily be conveyed. Suppose some conditional propensity exists, . ol
the propensity for D to occur conditional on C, Pr(D|C). ... Standard theories of condi- st
tional probability require that when Pr(D|C) exists, so does the inverse conditional probability thel
pro

Pr(C|D).... Yet the inverse propensity ..., Pr(C|D), ... is not related to Pr(D|C} inany simple
way, if indeed it is mathematically dependent at all. One might even doubt whether such an
inverse propensity exists. (Humphreys, 2004: 668).

If propensities are causal tendencies—that is, if Pr(Y at /X at f;) represents the causal
tendency of X at f; to produce Y at tp—then the propensity interpretation cannot make sense 1Ak

of the ‘backwards probabilities’ ... that have the form Pr(X at £]|Y at #;), at least not if cause Barn
must precede effect (this objection is due to Paul Humphreys; see Salmon (1984: 205). (Sober, G i
2010: 149). ;
When construed as causal tendency, probability cannot satisfy standard axioms because of -
the temporal asymmetry between cause and effect. (Milne, 1987: 330). ;ergf

0
It is true: there is a mismatch between propensities and probabilities. However, the cau;
mismatch is not only because of the time-asymmetry of propensities and the non- think
time—asymmetry of probabilities.” There are more general properties of propensities kind
that make them unable to be (standard) probabilities. On W,
To see this consider the following example, inspired by Sober (2010: n. 32). We
Suppose we roll a pair of dice fairly, and let By, be the background conditions that Hum
include that the dice were rolled at fy. Suppose that one die lands and finishes rolling event
before the other. Let £ and #, be the two times that the dice finish rolling (# < #), event.
and let One;, be that the die that finishes at #; lands with the face with one dot about
facing up, and similarly for other possible outcomes of the roll. There are all sorts probl
of unproblematic propensities associated with this setup: interp
Pr(Oney | By) = 1/6, Pr(Oney, | By,) = 1/6, etc. For
causal
But there are also plenty of problematic ones. Consider: anidl 1
Pr(Oney, |Foury, By,) = 1/6 backg

4

If we understand the formalism as we have so far, then this is the propensity for the }?;Op];:i
first die landing four to result in the second die landing one. But, intuitively, there ——
is no such propensity—which, again, is ambiguous between there being a propensity before,
variout

7 Why ‘non-time—-asymmetry’ and not simply ‘time-symmetry’? Because time does not figure in the
(standard) probability axioms, and also because they are not, strictly speaking, symmetric (in Popper’s
sense), anyway.

py—
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but with zero strength (another analogue of ZI), or there literally being no propensity
of any strength (another analogue of NP). By is a so—called common cause for Oney,
and Foury (if they happen), and there is no causal relation between One;, and Four,
themselves.

We therefore have a problem that is similar to Humphreys’ Paradox and Milne’s
Problem: we're forced, by the probability axioms, to have a propensity where we don’t
think there is one—or forced to have one with a strength which we don’t think is
correct. Fortunately, Rényi’s axiom system can come to the rescue again, in much
the same way as it came to rescue in the case of Milne’s Problem. One can simply
insist that the domain of the probability function that represents the propensities of
the situation is A x B, and that B only contains By, and so problematic conditional
probabilities such as Pr(Oney, | Four, By,) remained undefined.

6.6 The General Problem

Unfortunately, this victory is short-lived. Sober’s problem is similar to Humphreys’
Paradox and Milne’s Problem, but it is also different in an important respect: there
is no reliance on details concerning backward propensities or downward (synch-
ronic) propensities. As noted earlier, Humphreys’ Paradox is often attributed to the
temporal asymmetry of propensities which is not shared by probabilities. However,
Sober’s problem shows that there is a general feature of the probability axioms
causing the trouble: it forces there to be propensities of certain strengths where we
think there are no propensities. The temporal asymmetry of propensities is just one
kind of way in which this happen. There are other ways, and some of them are ones
on which appealing to Rényl’s axioms is of no help.

We can capture the three problems that we have seen so far with three slogans.
Humphreys’ Paradox: there are no backwards propensities from later events to earlier
events. Milne’s Problem: sometimes there are no propensities between synchronic
events. Sober’s Problem: sometimes there are no propensities between events brought
about by a common cause. But there are more slogans, and so there are more
problems. Whenever A and B are causally independent, there will be a problem with
interpreting P(A|B) (or P(B|A)) as a propensity.

For example: sometimes there are no propensities between events in independent
causal chains. Suppose that two dice are rolled at #, but one is rolled here on Earth
and the other is rolled really far away—say, outside of our light cone. Let B;, be the
background conditions at # that only include the details of the roll on Earth, and let
Hm be the background conditions at ty that only include the details of the roll that
happens outside of our light cone. Similarly, let One,, be the event of the Earth die
resulting in ‘one’ at t; and One'y, be the distant die resulting in ‘one’ at #; (#; can be
before, after or the same time as #,, it doesn’t matter—but both are after ). Again,
various unproblematic propensities exist, e.g.:

Pr(Oney |By) =1/6
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Pr(One},|By) = 1/6
But there are some problematic ones 00, €.g.:
Pr(Oney | By) =2

The 2’ is there because it isn’t clear what the value should be, but it is clear that
Kolmogorov’s axioms require that there be one (Prtn(B’to) will be greater than 0 if
Pr(One;, |By) is defined). Similarly, Popper’s axioms requires that there be a value
too, for any Popper function is defined over A x .A. One might hope that Rényi’s
axioms fare better, but they don't. Since Pr(Oney |By) = 1/6 and Pr(One), |B;,) are
assumed to be defined, this means that Oney,, Om:’11 e A and By, B’m € B, and since
the domain of any Rényi function is A x B, this means that it has to assign a value to
Pr(Oney | By)-

This, I believe, illustrates the most general form of the problem for propensity
interpretations: there are all sorts of pairs of events that have no propensity relations
between them, and all three axiom systems——Kolmogorov’s, Popper’s, and Rényi's—
will force there to be conditional probabilities between some of them. That is bad
news for propensity theorists if conditional probabilities are meant to represent

propensity relations.

6.7 Conclusion

As mentioned earlier, the typical reaction to Humphreys’ Paradox is that it is
a problem for the propensity interpretation. Humphreys thought otherwise, and
concluded that it’s a problem for the Kolmogorovian probability axiom system, and
that ‘the project of constraining semantics by syntax begins to look quite implau-
sible in this area’ (Humphreys, 1985: 570). In this spirit, I have argued that one
can solve Humphreys’ Paradox, Milne’s Problem, and Sober’s problem, if one rejects
Kolmogorov’s axioms as the correct probability axioms for propensities, adopts
Rényi’s axioms for propensities instead, accepts the NP and NP~ principles, and
allows that there can be different probability axiom systems for different probability
interpretations.

However, Sober’s problem points the way to a more general problem for the
propensity interpretation. There are all sorts of pairs of events that have no propensity
relations between them, and all three axiom systems_Kolmogorov’s, Popper’s, and
Rényi's—will sometimes force there to be conditional probabilities between them.
This is not an argument that there is no alternative axiom system that propensity
theorists can adopt, but it is an argument that the three main contenders ar¢

not viable.
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