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Abstract
Making good decisions depends on having accurate information – quickly, and in a form in
which it can be readily communicated and acted upon. Two features of medical practice
can help: deliberation in groups and the use of scores and grades in evaluation. We study
the contributions of these features using a multi-agent computer simulation of groups of
physicians. One might expect individual differences in members’ grading standards to
reduce the capacity of the group to discover the facts on which well-informed decisions
depend. Observations of the simulated groups suggest on the contrary that this kind of
diversity can in fact be conducive to epistemic performance. Sometimes, it is adopting
common standards that may be expected to result in poor decisions.

Introduction
It has long been known that collecting together inputs from several
people can increase the probability of correct decisions and the
accuracy of judgments [1,2]. More recently, it has become clear
that including different perspectives and ways of thinking within
the group can be just as important as individual expertise [3,4].
These insights provide an epistemological rationale for much
practice that has evolved in medicine, where knowledge is pieced
together in morning reports, case conferences, peer to peer
consultations and in other meetings and discussions among staff.
Improvements in the quality and efficiency of healthcare may be
expected to result from increased reliance on collective
intelligence in medicine [5].
Scores and grades play a central part in medical evaluation. For

example, Wells and Geneva scores are used in clinical medicine to
determine pre-test probabilities for pulmonary embolism,
expressed in the qualitative probability grades low, intermediate
and high [6,7]; decisions about further diagnostic testing depend
on the outcome.1 Following the Grading of Recommendations
Assessment, Development and Evaluation (GRADE) method,
systematic review panels categorize bodies of evidence as high,

moderate, low or very low in quality [8]. From Apgar scoring of
newborn babies [9] to the Glasgow Coma Scale used to identify
organ donors [10], scores and grades express many different
aspects of health throughout our lives.

Using grades and other qualitative language brings an important
advantage when decisions are made under pressure of time. It’s
not possible to know, say, exactly what the probability is that a
patient who’s just come into the emergency room has a pulmonary
embolism. That’s not necessary, though, in order to judge that the
probability is high, or intermediate, or low, and to decide on that
basis whether diagnostic procedures such as a CT scan, a chest
X-ray or blood tests will be carried out. The reason is just that
qualitative probabilities are coarse grained, each covering a range
of precise probabilities. There would appear to be drawbacks to
grading as well, though. One is that expressions such as ‘high’,
‘intermediate’ and ‘low’ can mean different things to different
people. Large differences between doctors and their patients have
been documented in the medical literature (see for instance [11]).
Similar differences were found among members of a science panel
in the Netherlands [12], and among students of business and the
social sciences (Fig. 1, [13]).

One solution to problems arising from different interpretations
of grades is to establish standard grading procedures for people
to use. Take for instance the Geneva and Wells rules for determin-
ing pre-test probabilities. They require scoring patients on relevant

1A pre-test probability is the subjective probability that a patient has some
given condition, before a diagnostic test result is available.
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criteria, and then adding up the scores to determine which grade
applies ([15], Table 7). Using the GRADE method, bodies of
evidence are categorized initially on the basis of study design,
and then up-graded or down-graded according to relevant
strengths or weaknesses of the study, such as large effect size, or
a serious risk of bias ([8], Table 3).
Another approach is to stipulate explicit definitions of grading

expressions. In some cases it is possible to specify precise
thresholds for applicability, as the Inter-governmental Panel on
Climate Change has done for the qualitative probability grades
used in its publications [16]. With a multi-faceted notion such as
quality of evidence, it is not straightforward to specify thresholds.
However, it is possible to characterize grades in ordinary
language. For example, the GRADE working group specifies that
moderate quality evidence means:

We are moderately confident in the effect estimate: The true
effect is likely to be close to the estimate of the effect, but there
is a possibility that it is substantially different. ([8], Table 2)

Arguably, these methods can be effective in establishing and
maintaining common grading standards. Inter-rater reliability
studies tend to confirm this [17,18]. The potential benefits are
obvious. Following standard protocols makes decisions
transparent. Also, having everybody “on the same page” helps
people to communicate the knowledge on which good decision-
making depends.
Grading standards are conventional. In the end, it’s completely

up to us, say, just which precise probabilities will count as low,

which as intermediate and which as high. We argue, though, that
they are not merely conventional, in that which standards we settle
on can greatly affect our ability to obtain knowledge and make
good decisions.2 Indeed, we argue, some standards are actually
harmful, in that a group that has adopted them will be worse at
“tracking the truth”, even, than a group whose members could
have any understandings at all of what the applicable grades mean.
Furthermore, we argue, which standards are better than which, and
which standards are harmful, can be hard to tell. This is because it
can turn on the nature of the facts that are to be discovered. For
example, when these concern the probabilities of several disorders
that a patient might have, it can turn on what these probabilities
happen in fact to be.
The capacity of a group to discover facts naturally depends on

much more than just its conventions about language and the nature
of these facts. The level of expertise of individual group members
also matters. So does the size of the group. To help us study
complex interactions between these and other factors, we have
built a computer model. It simulates a group with the task of
ranking some given possibilities in order of their probability, on
the basis of opinions expressed by individual group members
using qualitative probability grades. The group’s epistemic
performance in this task is reckoned as the frequency with which
an event that the group judges to be most probable really is that;
and by setting different parameters we can observe the
consequences of the group’s adopting various conventions about
the meaning of the grades in which individual inputs are
expressed. These observations are the basis for our claims about
the epistemic merits and demerits of grading standards.
We proceed as follows. The first section explains our model of

grading in groups and certain assumptions of its implementation.
The next section compares the performance of simulated groups
of graders working with different grading standards. The final sec-
tion summarizes the conclusions we draw from these results.

The model
In this section, we focus on a simple and idealized example of
collective scoring and grading from clinical medicine. First, we
build a model of this example, based on the Arrow-Sen framework
in social choice theory [19,20]. Then, we study the model with the
aid of computer simulations. An important innovation is that our
model includes the language of grades in which individual people
express their judgments, along with their interpretations of this
language. Taking interpretations of language into account is
necessary for a proper understanding of collective decisions more
generally, not just in the present medical context [21].
Here is the example. There is a group of three physicians, and a

patient who presents with certain symptoms: chest pains and
shortness of breath. There are several possible disorders: (H) the
patient is hyperventilating, or (HA) is having a heart attack, or
(P) has pneumonia, or (PE) has a pulmonary embolism, or....
The physicians are to rank the different ones, on the basis of the

Figure 1 Reproduced from [14], redrawn by [13].

2Similarly, legal speed limits are not merely conventional. They have con-
sequences for public safety, levels of pollution and the efficiency of our
transport system. It’s different with a simple matter of coordination such
as which side of the road we drive on.
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available information, in order of their pre-test probabilities.3 The
goal is to identify the disorder with the highest pre-test
probability.4

We now describe a mathematical model of this case. Let N be
the set of physicians, e.g. N= {Brown, Jones, Smith}, and let
D= {d1, d2,…, dn} be the set of possible disorders. The physicians
will evaluate these diagnoses using a grading language L = (G, ≻,
Ii). The first component G is the set of available grades. For
example, we might have

G ¼ high;medium; lowf g:

The second component≻ is a linear ordering of the grades. The
obvious ordering for these three is: high≻medium≻ low.
The interpretation function Ii tells us, intuitively speaking, how

each physician interprets all of the grades. For any given n ∈ N, In
assigns to each g ∈ G an interval of probabilities between 0% and
100%; this interval is n’s interpretation of g. For example, IBrown
could be the function such that

IBrown highð Þ ¼ 66%; 100%½ �

IBrown mediumð Þ ¼ 33%; 66%½ �

IBrown lowð Þ ¼ 0%; 33%½ �

Then Brown understands the grade high to correspond to a pre-
test probability from 66% to 100%, and so on. Of course, different
people may have different understandings. For example, Jones
might interpret the grades as follows:

IJones highð Þ ¼ 90%; 100%½ �

IJones mediumð Þ ¼ 10%; 90%½ �

IJones lowð Þ ¼ 0%; 10%½ �

If Im= In= I, for every m, n ∈ N, then I is called a consensus
interpretation. Intuitively, with a consensus interpretation,
everyone in the group has the same understanding of what the

grades mean. Such a consensus might arise naturally, or else it
might be the result of everyone’s having being told to interpret
the grades in some particular way.

In practice, physicians often (but not always) use scoring
systems, such as the Wells and Geneva systems, to assign grades
to possible diagnoses. We could model these systems explicitly.
Instead we take a more general approach that abstracts away from
the details of whatever scoring system or other process it is by
which physicians arrive at grades. We think of it like this:
physicians are presented with some information, i. It includes the
patient’s symptoms, medical history and so on. For each disorder
d, they convert this information i into a corresponding grade g.
Mathematically, we can think of this process as the following
mapping:

i; dð Þ→g

This mapping might be instantiated via a scoring system that the
physician has been instructed to use or it might be instantiated by
some other process – for example, the physician might make an
intuitive judgement on the basis of i that the pre-test probability
of d is g.

In order to have a model that we can study systematically, we
now add some details. First, we assume that i and d together fix
some correct pre-test probability p ∈ [0,1]. Second, we introduce
the notion of an individual point estimate. The idea is that for
any given individual n there is some noisy process that turns p into
n’s estimate e thereof. For simplicity, we assume this process is an
unbiased Gaussian with variance σ2 (i.e. a normal distribution or
‘bell curve’). Third, we assume that e is then converted to the
appropriate grade g, according to n’s interpretation In. For
example, if e= 5% and we use Jones’ above interpretation, then
the grade Jones assigns to the disorder in question is low. The
model, then, can be thought of as the following sequence of map-
pings:

i; dð Þ→p→e→g

Note that we do not assume that n is aware of e or actually
constructs e in any conscious way. Indeed, we think that in many
situations this is rather unlikely (scoring systems typically do not
mention point probabilities). Instead, we take the above to be an
abstract model of individual grading. As such, e is a theoretical
parameter that we use to generalize across many different ways
of moving from (i, d) to g, including the use of scoring rules and
other protocols that make no reference to point probabilities or
estimates.

Based on this noisy process and the individual interpretations of
the grades, the individuals assign grades to each of the disorders.
Each individual then selects the disorder they give the highest
grade. (We must allow for the possibility that several disorders
get the top grade. For example, Brown might think that both
pneumonia and pulmonary embolism are high probabilities. In
such situations, we assume that ties are broken by randomly
selecting from the top grade category.) Either the individual’s
selection is correct, being at the top of the objective ordering, or

3The pre-test probability P(D+) of a disorder is understood here to be the
proportion D+/(D+ + D�) of patients with this disorder among all those
with this particular patient’s symptoms.

4We assume that identifying the most probable condition is relevant to
medical decisions. Sometimes, it certainly is: in determining the Wells
score for PE, for instance, physicians are expected to determine whether
PE is the most probable diagnosis – or, anyway, whether it is at least as
likely as any other [6]. In general, perhaps, it is more important instead
to identify those possibilities that require immediate action; for now,
though, we assume that what matters is simply probability.
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else it is not. The individual’s expected performance is, by
definition, the proportion of cases in which the selection is correct,
within a large number of trials.
So far, we have been busy with individual judgements.

However, we are interested in the judgements of the group. These
are obtained by aggregating the individually assigned grades.
Different procedures can be used for this. Here, we follow the
simple method of taking the median or middlemost of the individ-
ually assigned grades: the grades assigned to d by the different i ∈
N are first listed in order of≻ (including repetitions, when several
have assigned the same grade). If the number of N is odd, the
collective grade for d is the one that’s in the middle of the list. If
it is even, the collective grade for d is randomly selected from
the two grades in the middle of the list.5

The group chooses the disorder to which it gives the highest
grade. (Again, ties are broken by random selection.) Either the
group’s selection is correct, in that this disorder really is one of
those with the highest pre-test probability, or else it is not. The
group’s expected performance is, by definition, the proportion of
cases in which its selection is correct, within a large number of
trials.
In this paper, we focus on individual interpretations of the

probability expressions. Would it be good for the group to have
a single common interpretation – a semantic consensus, as we will
call it? If so, which semantic consensus will be best, in the sense
that it is most favourable for determining pre-test probabilities?
Even in our simple example, this depends in complicated ways
on many factors. In order to answer such questions as these, we
take up a tool that is often used to study complex social interac-
tions: multi-agent computer simulation [22]. That requires making
further modelling assumptions, to which we now turn.
For one thing, we need an assumption about how the pre-test

probabilities of the different possible disorders are distributed.
We don’t assume the disorders are mutually exclusive: a patient
can have several at once. For simplicity and for some degree of
realism, we assume that the pre-test probabilities are distributed
according to a Pareto distribution, αxα/xα+1, where α is a parameter
that we can vary in the simulations.6 For each simulation run of
our model, a distribution of 30 pre-test probabilities is generated
from a Pareto sample; the individuals then grade the diagnoses
according to the model described above with σ2= 10%, and then
their performance is assessed in terms of how often they choose
disorders with the highest pre-test probability. Finally, the group
grades are determined by aggregating the individual grades and
the group performance is then also assessed in terms of how often
it chooses the most probable disorders. Performance scores are
averaged over 2000 simulation runs.
Regarding the grades and interpretations, we assume that the

physicians have 3 grades available to them (this is realistic: many
real scoring and grading protocols use from 2 to 4). And in our

simulations, we focus on the three kinds of consensus interpreta-
tions and one non-consensus set of interpretations:
1 A symmetric consensus interpretation with thresholds of [33,

66, 100]. (That is, individuals with this consensus interpret
low as [0, 33], medium as [33, 66] and high as [66, 100].)

2 A bottom-heavy consensus interpretation with thresholds of
[25, 50, 100].

3 A top-heavy consensus interpretation with thresholds of [50, 75,
100].

4 A random set of interpretations, where each individual has
thresholds [a, b, 100], where a and b are generated by randomly
selecting uniformly from the (0, 100) interval.
Our goal here is not to study every conceivable interpretation,

but rather to demonstrate how dramatically the performance
associated with a particular consensus can turn on the details of
the situation at hand. Similarly, in making our many precise and
idealizing assumptions – for example, that the pre-test probabili-
ties are approximately Pareto – we aim to illustrate how the
performance associated with a particular consensus can be highly
context sensitive. The upshot is that when designing scoring and
grade systems, we ought to think carefully about the details of
the situations in which they are going to be employed. Computer
simulations, we argue, can help us greatly with that.

Results
We studied 2000 simulation runs of the model described in the
previous section for two parameter settings of the Pareto
distribution from which the pre-test probabilities are sampled:
α= 3 and α= 20. These are summarized in Figs 2 and 3. Recall that
smaller values of α make more disorders more likely. So, we have
effectively studied two kinds of situations: one in which the vast
majority of disorders are unlikely (α= 20) and another in which
several disorders tend to have a pre-test probability greater than
50% and some are even quite likely, with probabilities above
80% (α= 3).
In the first kind of situation (Fig. 2), the bottom-heavy

consensus – that is, the ‘[25,50,100]’ consensus – gives the best
performance (for both individuals and groups), and the top-heavy
consensus – that is, the ‘[50,75,100]’ consensus – gives the worst
performance (again, for both individuals and groups).
However, in the second kind of situation (Fig. 3), the exact

reverse occurs: the top-heavy consensus gives rise to the best
performance (for both individuals and groups), and the
bottom-heavy consensus gives rise to the worst performance
(again, for both individuals and groups). This reason is this. In
the first kind of situation, the bottom-heavy consensus makes
more distinctions where most of the pre-test probabilities are –
see the example distribution of pre-test probabilities in Fig. 2.
And, in the second situation, the top-heavy consensus makes
more distinctions where they matter: where the very likely pre-
test probabilities are – see the example distribution of pre-test
probabilities in Fig. 3.
This reversal demonstrates just how sensitive the performance

associated with a particular consensus can be. The only difference
between the two kinds of situations is the variation of the
parameter α from 20 to 3. In real life, situations will vary in many
more – and much more complicated – ways.

5One advantage of making decisions in groups is that people’s positions
change in light of group discussion. By simply aggregating the individually
assigned grades, we leave this important aspect of deliberation to one side.
Modeling it is a promising line for future work of the sort begun here.
6With a Pareto distribution, the different diagnoses can be ‘bunched up’ at
the bottom, with many improbable ones and only a few that are probable.
See for example Fig. 2. Smaller values of α make more diagnoses more
likely.
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In both situations, some semantic consensus resulted in worse
epistemic performance than random interpretations: in Fig. 2, the
top-heavy consensus was worse; in Fig. 3, the bottom-heavy
consensus was. This suggests that if time and energy are to be spent
on forming a semantic consensus, it is important to think carefully
about which it will be; otherwise, it might well be better simply to
let everyone interpret the grades just as they please. Surprisingly,
perhaps, letting people understand grades any old how can result in
better performance than reaching a common understanding.

In both situations, we see collective wisdom effects – that is,
group performance tended to be better than individual
performance – but they are small. This is mostly because the group
of physicians was assumed to be small, with just three members,
and because the noise associated with the process of generating
the hypothetical estimates was fairly low (σ2= 10%). Clearer
differences between individual and group performance can be
observed with more noise (e.g., σ2= 30%) and a larger group
(e.g., |N| = 10). This is demonstrated in Fig. 4.

Figure 3 Performances of different interpretations for individuals (green) and groups (blue) for a Pareto distribution of pre-test probabilities with α = 3.
Error bars are 95% confidence intervals based on 2000 simulation runs.

Figure 2 Performances of different interpretations for individuals (green) and groups (blue) for a Pareto distribution of pre-test probabilities with α = 20.
Error bars are 95% confidence intervals based on 2000 simulation runs.
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In the cases we have looked at so far, there is always a consensus
interpretation that performs better than the symmetric consensus.
However, by changing some of the assumptions of our model, we
find situations in which the symmetric consensus performs best
(of the interpretations we discuss here). For example, changing the
underlying distribution of pre-test probabilities to a Gaussian, with

a mean of 50% and a variance of 10%, and reducing the number
of possible disorders from 30 to 10 (Fig. 5), we observe that the
symmetric consensus performs better than the other consensus
interpretations and random interpretations. Again, we see how the
relative performance of a consensus interpretation is sensitive to
the details of the situation at hand.

Figure 4 Performances of different interpretations for individuals (green) and groups (blue) for a Pareto distribution of pre-test probabilities with α = 3,
noisier physicians (σ2 = 30%) and more physicians (|N| = 10). Error bars are 95% confidence intervals based on 2000 simulation runs.

Figure 5 Performances of different interpretations for individuals (green) and groups (blue) for a Gaussian distribution with mean 50%, variance 10%
and 10 possible disorders. Error bars are 95% confidence intervals based on 2000 simulation runs.
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Summary and discussion
People often find it easier to grade, and to communicate with
others in qualitative terms, rather than to use more rigorous
language. In order to avoid interpersonal differences in the
interpretation of grades, steps can be taken to standardize
usage. These include the use of scoring and grading
protocols, and providing explicit definitions of the relevant
expressions.
We showed using a computer simulation that, from an

epistemological viewpoint, some standards are better than
others. Importantly, some standards can result in very poor
performance, in that a group having adapted them may be
expected to be less capable of discovering relevant facts, even,
than a group of people whose members could interpret the
grades in any way at all. (This can be seen in Figs 2 & 3, where
the performances of random interpretations were better than
top-heavy and bottom-heavy interpretations, respectively.)
Crucially, which standards lead to better performance, and
whether adopting any given standards would help the group or
hurt it, is highly contextual. In the case we considered here, it
depends, among other things, on what the probabilities of the
given disorders happen to be.
Our model of individual and collective grading is very simple.

Surely some of its assumptions and idealizations will be found
unrealistic. The task we analyzed, choosing the most-probable
disorder, is also simple. A more important task, perhaps, is
choosing the disorder with the highest expected danger, because
although such disorders might be relatively unlikely, they can
require immediate action. Because some disorders with substantial
danger are more likely than others, this should have a significant
impact on the performances associated with different grading stan-
dards. With multi-dimensional tasks, there is also further scope for
interpersonal differences and for standardization, because in addi-
tion to having different thresholds, people can attach different
weights and priorities to the several dimensions. There is much
work to be done before our simulation studies cover any large part
of real medical practice.
Be this as it may, the results already point to the contribution

that computational studies can make. Scores, grades and other
qualitative language are used throughout medicine, for
estimating probabilities, evaluating evidence and more. Our
simulations show not only that different ways of standardizing
such language can have very different consequences for
performance, but also that many other factors are relevant, all
interacting in complicated and sometimes unintuitive ways.
Introducing computational studies and statistical analysis into
the development of scoring and grading systems may be
expected to help researchers to think through the consequences
of basic design decisions such as how many grades to use,
how many people are needed for expert panels to be effective
and what the required levels of expertise are – before their
decisions become well-established in medical practice.
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