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We report the results of a meta-analysis study of the relative accuracies for a range of methods for aggregating
confidence interval estimates of unknown quantities. We found that a simple “trim-and-average”method—that
is, remove outliers and then average—produced themost accurate estimates. Our results show thatmore compli-
cated methods of confidence interval aggregation, which factor in confidence levels and estimate imprecisions,
do not produce estimates more accurate than those produced by the simple trim-and-average method.
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1. Introduction

The so-called wisdom of crowds, or collective wisdom, has proven to
be an effective method for forming accurate judgments in situations of
uncertainty (see e.g., Armstrong, 1989; Clemen, 1989; Nielsen, 2011;
Page, 2008; Surowiecki, 2004). The essence of the idea is simple: by
collecting a large number of judgments and combining those judgments
into a single, collective judgment, one will obtain a judgment that will
tend to bemore accurate than the individual judgments. In the language
of folk wisdom: two heads are often better than one, and more heads
tend to be even better.

How one decides to combine the individual judgments into a collec-
tive judgment is one's aggregation method. An aggregation method
takes as part of its input a set of individual judgments, and produces a
single judgment as its output. Aggregation methods can be classified
in terms of their inputs and outputs, and we can break them up into
two broad categories: (i) methods whose input and output judgments
are of the same kind, and (ii) methods whose input judgments are
different in kind from their output judgments. An example of the first
kind of aggregation method is a jury voting method: the inputs are
binary “innocent”/“guilty” judgments and the output is also an
“innocent”/“guilty” judgment (see e.g., Condorcet, 1785; Ladha, 1992;
List and Goodin, 2001). The vast majority of the literature on aggregat-
ing judgments tends to focus on the first kind of aggregation method,
intle@unimelb.edu.au
with a particular focus on point estimates/forecasts of quantities and
probability estimates/forecasts of facts or events (e.g., Clemen, 1989;
Clemen and Winkler, 1999; Clements and Harvey, 2011; Cooke, 1991;
Genest and McConway, 1990). This paper is a study of the second kind
of aggregation method.

Why aggregate judgments of one kind into a collective judgment of
another kind? One simple reason is that the available input judgments
may happen to be different from the desired kind of judgment. For
example, a probabilistic forecast of an event may be desired but only
binary judgments are available, in which case the binary judgments
will somehow need to be combined into the desired probabilistic
outcome.

The above reason relates to outputs. A second reason relates to
process. In translating one kind of judgment to another—or even,
complementing one kind of judgment with another—there is an oppor-
tunity to use elicited information in the aggregation process. For exam-
ple, suppose we need a point estimate of how much sales will grow by
in the next year and we consult two sales experts. The first expert
reports that sales will grow by 5% and the second reports that they
will grow by 10%. In this situation, it probably makes sense to take a
simple average of the estimates, where the estimates are given equal
weight. However, suppose instead that we ask the sales experts for
interval estimates that they are 90% confident in. Thefirst expert reports
that sales will grow by 4–6% and the second expert reports that sales
will grow by 0–30%. All else being equal, it now appears that we
might be better off giving more weight to the first expert's estimate,
because, given standard conversational norms (Grice, 1975), precision
in a judgment indicates that the judge believes he or she has relevant
knowledge about the issue at hand. Indeed, Yaniv, 1997 found that the
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average of the midpoints of confidence intervals, weighted by the
precisions of the confidence intervals, tended to be more accurate (in
terms of mean absolute percentage error) than the simple, unweighted
average of the midpoints.

However, individuals are notoriously overconfident when they
produce interval estimates for pre-set confidence levels (e.g., Alpert
and Raiffa, 1982; Lichtenstein, Fishhoff, and Phillips, 1982; Soll and
Klayman, 2004; Teigen and Jørgensen, 2005; Yaniv and Foster, 1997).
Although this overconfidence is high and robust, it can nevertheless
be mitigated by asking for the lower and upper bounds of the interval
estimates separately (Soll and Klayman, 2004). Overconfidence can
be further reduced if individuals are allowed to assign their own
confidence levels to their interval estimates—rather than producing
an interval estimate for a level of confidence that is pre-set by the ex-
perimenter (Speirs-Bridge et al., 2010; Teigen and Jørgensen, 2005).
This effect leads to a natural question: Given a set of confidence inter-
vals with varying levels of precision and varying probabilities
(i.e., confidence levels), are there aggregation methods, which produce
point estimates, that are systematically better than simple unweighted
averages? This paper examines this issue by conducting a meta-
analysis of the performances of a range of aggregation methods of
varying complexity over the results of 15 experiments which elicited
such confidence levels.

2. Theory: aggregation methods

The baseline of confidence interval aggregation is the method that
simply takes the unweighted average of the midpoints of each interval
(cf. Yaniv, 1997). If N confidence intervals have been elicited, and mi

are their midpoints, this aggregation method says:

Unweighted Average : J ¼ 1
N

XN

i¼1

mi ð1Þ

where J is the collective judgment. The unweighted average is guaran-
teed to be no less accurate—in terms of absolute error—than the typical
individual judgment, and if the individual judgments bracket the true
value of the quantity in question (i.e., some of the mi are too low and
some are too high), then the unweighted average is guaranteed be
more accurate than the typical individual judgment (cf. Herzog and
Hertwig, 2009; Larrick and Soll, 2006). Since we take this to be the
baseline method, we will use it to assess the performance of the other
aggregation methods described below.

The unweighted average has proven to provide surprisingly accurate
collective judgments (Armstrong, 1989; Fischer and Harvey, 1999;
Surowiecki, 2004; Wallsten, Budescu, Erev, Diederich, et al., 1997).
However, there are a number of ways in which it appears that the un-
weighted average can be improved upon. These possible improvements
fall into two kinds: statistical improvements, and psychological im-
provements. If we think of each individual human judgment as a
measurement of the quantity that we're interested in and each human
as a measuring device with its own bias and distribution of error, then
the process of determining a collective judgment is a familiar task in
statistics: choosing an appropriate estimator given what is known
about the data. Viewed this way, the problem of judgment aggregation
is just a problem of statistics, and we can help ourselves to the
statistician's sophisticated tools of estimation.

However, we know that the measuring devices are really humans,
with their own complicated psychologies. They think about evidence
and they form beliefs with uncertainties and biases, and they announce
those beliefs and uncertainties with possibly yet another layer of biases
(Kahneman, Slovic, and Tversky, 1982). Given our knowledge about
human psychology, it seems that there ought to be ways of improving
upon the unweighted average by incorporating more psychological
information about the judgments. The unweighted average of the
midpoints ignores a lot of psychological information that can also be
gleaned from the individual confidence intervals, and perhaps by incor-
porating that information in the average,we can produce a better aggre-
gation method. We will first discuss some psychologically motivated
improvements over the unweighted average, and then we will turn to
the statistical ones.

Given that we are assuming that confidence intervals have been
elicited as our inputs, we know that the unweighted average of the
midpoints of the intervals ignores two potentially important pieces of
information contained in the confidence intervals: (i) the confidences
assigned to the intervals, (ii) and theprecisions—orwidths—of the inter-
vals. For example, if someone is asked what the unemployment rate is,
and they respond with the interval of 0% to 50%, then that is a sign
that they know (or at least think they know) very little about the true
value of the unemployment rate. In contrast, someone who gives a
very precise interval, say 7.1% to 7.2% seems to have (or at least think
they have) a lot of evidence about the unemployment rate. In which
case, it may be desirable for former judgment to have less influence on
the collective judgment and the latter to have more. Yaniv (1997) and
Wintle (2013)find thatwhen individuals providemore precise intervals
for a given question, they tend to have lower absolute errors. Therefore,
weighting the midpoints by the interval precisions should produce
more accurate judgments. If the interval lengths, li, have been rescaled
to a scale of 0 to 1,with 1 being the length of themost imprecise interval
for the given question, then one way of giving more weight to more
precise judgments is the following weighted average:

Precision‐Weighted Average : J ¼ 1
N

XN

i¼1

mi 1−lið Þ ð2Þ

where N is the appropriate normalization factor for the weighted

average: N ¼ ∑
N

i¼1
1−lið Þ.

Here, the precision of an interval with midpoint mi is measured as
1 − li.

At the same time, it seems that the probability that an individual
assigns to their interval is also a relevant factor. Several studies have
found small-to-moderate positive correlations between the probability
assigned to a judgment and the accuracy of that judgment (e.g.
Armstrong, 1985, p. 138; Braun and Yaniv, 1992; Lichtenstein et al.,
1982;Wells andMurray, 1984;Winkler, 1971; Yates, 1990). If the prob-
abilities assigned to interval estimates also track the accuracy of the
midpoints of the intervals, then the following aggregation method
may prove effective:

Probability‐Weighted Average : J ¼ 1
N

XN

i¼1

mipi ð3Þ

where pi is the probability (i.e., confidence level) assigned to the interval
with midpoint mi. This Probability-Weighted Average assigns more
weight to themidpoints that come from intervals with higher probabil-
ities assigned to them.

Ideally, however, it seems that the aggregation method should be
sensitive to both pieces of information: it should take into account
both the precision of the interval and the probability assigned to it.
One way to do this is to combine the Precision-Weighted Average and
the Probability-Weighted Average into what we will call a Certainty-
Weighted Average:

Certainty‐Weighted Average : J ¼ 1
N

XN

i¼1

mipi 1−lið Þ ð4Þ

where again N is the appropriate normalization factor for the weighted

average: N ¼ ∑
N

i¼1
pi 1−lið Þ.
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All three weighted averages take into account more of the avail-
able psychological information than the unweighted average does.
Therefore, insofar as there is reason to think that this additional
psychological information tracks the accuracy of the midpoints of the
confidence intervals, there is reason to expect that the weighted aver-
ages will outperform the unweighted average. Moreover, since the
Certainty-Weighted Average takes into account the most psychological
information available, there is reason to think it will be the best
performing method.

Although the Certainty-Weighted Average takes into account all of
the elicited psychological information, it may, nevertheless, be possible
to use this information to infer further psychological information and
incorporate that into a more sophisticated weighting scheme. In partic-
ular, given a confidence interval that someone has assigned, it should be
possible tomake a rough approximation of the probabilities theywould
assign to other intervals if asked to do so. For example, someone who
has assigned an 80% confidence to the interval 7% to 8% will probably
think that the interval 8% to 9% is much more likely than the interval
20% to 21%. Such an inference will not always be true. For example, it
might be that the individual has reason to think a bimodal distribution
is appropriate and they assign a higher probability to the 20%–21%
range than the 8%–9% range. However, if such cases are rare, then
modeling the individuals with unimodal distributions may provide
accurate enough inferences about their hypothetical judgments.

The reason why we mention this is that if we can infer a probability
distribution from an individual's confidence interval, then we can
weight the midpoint of their interval by the Shannon entropy of their
distribution. By calculating the Shannon entropy, ei, of their distribution,
we may obtain a better assessment of how much information that
person thinks they have about the question at hand. This is because
the Shannon entropy of a distribution has proven to satisfy key con-
straints that any measure of information ought to satisfy (Shannon,
1948).

There are many ways to infer a unimodal distribution from a confi-
dence interval. However, to keep our analysis manageable, we will as-
sume that confidence intervals are drawn from Gaussian distributions.
Although we have little evidence for this assumption, it seems to be
the simplest assumption that can bemade. Putting these ideas together,
we can weight the midpoints by the entropies inferred from the confi-
dence intervals, with the most weight going to the lowest entropy and
0 weight going to the maximum entropy:

Entropy‐WeightedAverage : J ¼ 1
N

XN

i¼1

mi max ej

n o
−ei

� �
ð5Þ

where N = ∑i = 1
N max{ej} − ei, and

ei ¼ −
X

qj ln qj

� �

and max{ej} is the largest entropy for the judgment set, and qj are the
probabilities of the normal distribution inferred from the confidence in-
tervalwithmidpointmi. Sincewe have reason to think ei is a bettermea-
sure of information than mipi (1 − li), we have reason to think the
Entropy-Weighted Average will outperform the Certainty-Weighted
Average. (For an alternative entropy-based weighting scheme, which
relies on “intrinsic ranges” of the quantities to be estimated, see Cooke,
1991 pp. 190–2.)

We now turn to some potential statistical improvements on the
Unweighted Average. One potential problem with the Unweighted
Average is that it can be a poor representation of the general location
of a data set. For example, consider the two sets of judgments concerning
GDP growth:

(i) −0.1%, 0.1%, 0.2%,−0.3%, 0.1%, 0.3%,−0.3%, 0.2%,−0.1%,−0.1%
(ii) −19.1%, 5.1%, 5.2%, 4.7%, −20.5%, 5.4%, 4.7%, 4.6%, 4.8%, 5.1%.
In both cases, the average of the estimates is 0%, but the distributions
of the guesses differ in an important way. The first set of estimates
cluster around 0%, but the second tend to cluster more around 5% than
they do around 0%. The only reason why the average of the second set
of estimates is 0% is because of the two extremely negative estimates.
In the first case, the individuals could agree to 0% as the collective
judgment as a compromise—perhaps because 0% is so close to each
individual estimate. However, in the second set, no one believes that
the effect will be about 0%, so to take 0% as the collective judgment
seems like a rather odd thing to do.

One way to obtain a better representation of the value that the data
clusters around is to take the median of the data:

Median Judgement : J ¼ median mif gð Þ: ð6Þ

Themedian of the second judgment set is 4.75%, and this seems to be
a better measure of the location around which the judgments cluster.

Yet another way to improve on the mean is to simply first remove
any outliers from the data set, and then take the unweighted average
of the remainders (cf. Armstrong, 2001; Jose and Winkler, 2008).
There are many methods for removing outliers, each with its distinct
statistical properties. We will focus on one common method of outlier
trimming: the median absolute deviation (MAD) filtering method.
Each midpoint mi is determined to be an outlier and trimmed from
the data set if:

mi−median mj

n o� �
=mdevNt ð7Þ

where

mdev ¼ median mk−median mhf gð Þj jf gð Þ

and t is a parameter that controls the sensitivity of the trimming (k and
h are dummy variables). Smaller values of t tend to result inmore of the
mi being counted as outliers than larger values of t. (From our empirical
results (Section 4), we found the optimal value for t to be 2.) Letmi

⁎ be
the remaining judgments. We then define the MAD Unweighted
Average as:

MAD‐Unweighted Average : J ¼ 1
N

XN

i¼1

m�
i : ð8Þ

The MAD Unweighted Average tends to be better than the
Unweighted Average at measuring the location around which data
sets cluster. For example, the MAD Unweighted Average (with t = 2)
of the second set of GDP growth judgments is 4.95%. One potential
drawback to this method—and any method that removes outliers—is
that it has the potential to ignore strong dissenting voices. This can be
a problem in situations of groupthink, where the process of forming a
collective judgment neglects well-justified outlier opinions and is
biased towards a consensus judgment, irrespective of the evidence
for that judgment. For more on the problem of groupthink, its causes,
and methods for mitigating it, see Janis (1982), Taleb (2007), and
Woodside (2012).

Statistics affords us many more sophisticated estimators
(e.g., instead of the MAD filter, we could use the Dixon Outlier Q-Test,
or we could a fit a distribution to themidpoint data and use amaximum
likelihood estimator), however, we will leave our discussion here, for
as we will show in the next section, the methods discussed above
already serve our main point: the more complicated—and in this
case—psychologically motivated aggregation methods do not outper-
form the simpler and statistically motivated methods. In fact, we will
show that even combining the statistically motivated methods with
the psychologically motivated ones also doesn't result in any method
that is superior to the simple statistical methods. There are many such
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methods and, for simplicity, we restrict our focus to the following
methods:
T
D
Q

• MAD-Entropy-Filtered
Entropy-Weighted Average
able 1
etails of the 15 experiments, listed in chronolo
= number of questions.

Experiment N Q Elicitation Question

1 21 10 4-Step Animal an
2 24 10 4-Step Animal an
3 13 8 4-Step Ecology, f
4 25 5 4-Step Public hea
5 20 6 4-Step Risk analy
6 14 8 4-Step Weed Eco
7 22 30 3-Step General kn
8 24 24 4-Step Conservat
9 30 30 3-Step Birth year

and statis
10 13 30 3-Step Birth year
11 24 30 3-Step General kn
12 17 30 3-Step Birth year
13 17 30 3-Step Birth year
14 17 30 3-Step Birth year
15 17 30 3-Step Birth year
• MAD-Probability-Filtered
Unweighted Average
• MAD-Certainty-Filtered
Certainty-Weighted Average
• MAD-Filtered Median Judgment
• MAD-Precision-Filtered
Precision-Weighted Average
• MAD-Filtered Entropy-Weighted
Average
• MAD-Probability-Filtered
Probability-Weighted Average
• MAD-Filtered Certainty-Weighted
Average
• MAD-Entropy-Filtered Unweighted
Average
• MAD-Filtered Probability-Weighted
Average
• MAD-Certainty-Filtered Unweighted
Average
• MAD-Filtered Length-Weighted
Average
• MAD-Precision-Filtered Unweighted
Average
For example, the MAD-Probability-Filtered Probability-Weighted
Average takes the mid-points multiplied by their probabilities, applies
a MAD outlier filter to those points, and then takes a probability
weighted average.

The reasonwhywe consider the psychologicallymotivatedmethods
of this paper to be more complicated than the statistically motivated
methods, is because, here, the former take more variables as input.
We do not wish to imply that psychologically motivated methods are
inherently more complex. Written functionally, and where J is the
collective judgment, the statistically motivated methods have the form:

f Mif gð Þ ¼ J

whereas the psychologically motivated methods have the form:

f Mif g; lif gð Þ ¼ J E:g:; the Precision‐Weighted Averageð Þ
f Mif g; pif gð Þ ¼ J E:g:; the Probability‐Weighted Averageð Þ
f Mif g; lif g; pif gð Þ ¼ J E:g:; the Certainty‐Weighted Averageð Þ:

There aremore dimensions to the complexity of functions, but this is
at least one of them. Another aspect to the complexity of a function is its
structural details—for example, in model selection theory, a linear
model is considered more simple than a parabolic one, and so on
(Akaike, 1973; Forster and Sober, 1994). For this reason, we consider
the aggregation methods that are combinations of the psychologically
and statistically motivated methods (listed in above) to be even more
complicated.
gical order.N=number of participants,

topic(s)

d plant biosecurity and quarantine
d plant biosecurity
rog biology
lth, medicine
sis, biosecurity
logy
owledge and the history of philosophy
ion Biology
s of famous figures in probability
tics
of famous historical figures
owledge and the history of philosophy
of famous historical figures
of famous historical figures
of famous historical figures
of famous historical figures
3. Methods

To assess the relative performances of the aggregation methods, we
conducted a random-effects meta-analysis (Cumming, 2012, ch. 8) of
the data collected from 15 experiments.

Each experiment consisted of 10 to 30 participants who were asked
5 to 30 questions about the true values of a range of different quantities.
In each experiment, the set of questions was chosen so that all partici-
pants were either experts or they had at least a basic familiarity with
the questions. Table 1 specifies the precise details of each experiment.
In total, 311 questions were asked and 264 participants were involved
(experiments 12 and 13, and 14 and 15 shared the same participants).
All answerswere in the formof confidence intervals elicited using either
the 3- or 4-step method described in Section 2.

Inputs were elicited using a variant of the 4-step elicitation method
developed by Speirs-Bridge et al., 2010, which reduces the overconfi-
dence effect for confidence intervals (see also Soll and Klayman, 2004;
Teigen and Jørgensen, 2005 for similar methods). The Speirs-Bridge
et al. 4-step method asks for a confidence interval in the followingway:

Given the evidence you have,

(i) Realistically, what do you think is the lowest value that the
unemployment rate could be?

(ii) Realistically, what do you think is the highest value that the
unemployment rate could be?

(iii) Realistically, what is your best guess (i.e., most likely estimate)?
(iv) How confident are you that the actual unemployment rate is

between your lower and upper estimates?

Some of the experiments reported in the next section used a variant
of this method, in which a best-guess estimate was not elicited. For con-
venience we will call the method that skips question (iii) the 3-step
method and the method described above the 4-step method. (Note that
this differs from the 3-step method as described by Soll and Klayman,
2004; Speirs-Bridge et al., 2010, which asks for (i) the lower bound, (ii)
the upper bound, and (iii) the best guess; at a fixed level of confidence.)

The 15 experiments were originally conducted to test other hypoth-
eses. Experiments 1–6 were conducted to see if participant expertise
correlates with judgment accuracy. See Burgman et al. (2011) for fur-
ther details. Experiments 7–15were conducted to see if overconfidence
in confidence interval judgments can be reduced by having participants
assign probabilities to each other's confidence intervals. Initial results
from experiment 7 (the first experiment in the series) suggest that
this is in fact the case (Lyon, Fidler, and Burgman, 2012). Our purpose
here, however, is to present a meta-analysis of the data collected in
these 15 experiments to study the relative performances of the aggrega-
tion methods described in the previous section.

Since the experiment questions covered a wide range of very differ-
ent quantities, we chose to rescale the participants responses to a [0, 1]
scale, so that the performances of the aggregation methods can be
compared across the questions. For a given question, each participant
response, j, was rescaled using the following formula:

j� ¼ j−xmin

xmax−xmin

where xmin is the smallest lower bound of the confidence intervals given
in response to the question, and xmax is their largest upper bound. This
range coding ensures that the answers to each question contribute
roughly equally to the overall assessment of accuracy, which was mea-
sured in terms of the Absolute Error.

Since the Unweighted Average is the baseline by whichwe compare
the other aggregation methods, we chose our effects to be the differ-
ences between the aggregation methods and the Unweighted Average.
For example,where JUnweighted⁎ is the range-coded judgment given by the
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Unweighted Average, and JPrecision⁎ is the range-coded judgment given
by the Precision-Weighted Average, and T ⁎ is the range-coded true
value of the quantity in question, then the effect for the Precision-
Weighted Average is:

Effect for Precision‐Weighted Average ¼ T �− J �Unweighted

���
���− T �− J �Precision

�� ��

where a positive valuemeans that the Precision-Weighted Averagewas
more accurate than the Unweighted Average, and a negative value
means it was less accurate.

4. Results

As expected, the Precision-Weighted average tended to be more
accurate than the Unweighted Average (Fig. 1). This result is similar to
that of Yaniv (1997) who found that the average weighted by the
inverse of the confidence interval lengths was more accurate than the
Unweighted Average. (We also looked to see which weighting scheme
was more accurate and found that the Precision-Weighted Average
was more accurate than the average weighted with the inverses of the
confidence interval lengths.)

There was also a slight improvement in the Probability-Weighted
Average over the Unweighted Average. However, by combining the
probability weights with the precision weights to form the Certainty-
Weighted Average, we found there was an improvement over the Un-
weighted Average, Precision-Weighted Average, and the Probability-
Weighted Average. (Pairwise comparisons produced no overlapping
95% CIs.) We expected this result because the Certainty-Weighted
Average takes into account the most psychologically relevant informa-
tion, and there is reason to think this information tracks accuracy
(cf. Section 2). As explained in Section 2, there is reason to expect that
the Entropy-Weighted Average might be an improvement over the
Certainty-Weighted Average. However, this proved not to be the case.
The Entropy-Weighted Average proved to be slightly less accurate
than the Certainty-Weighted Average (although this wasn't statistically
significant), and its improvements over the Unweighted Average were
substantially more variable (Fig. 1).

Although the methods motivated by psychological considerations
were more accurate then the Unweighted Average, they were not
more accurate than themethodsmotivated by statistical considerations.
The Median Judgment and the MAD-Filtered Unweighted Averaged
were both slightly more accurate than the Certainty-Weighted Average
(although this wasn't statistically significant). As we explained earlier,
Fig. 1. Improvements of the aggregation methods over
the MAD-Filtered Unweighted Average first trims any outliers from
the data set before themidpoints are averaged. The amount of trimming
is controlled by the parameter t (in Eq. (7)) and we found the optimal
value to be t = 2, which resulted in about 25% of the judgments being
ignored by the method for each question (mean = 25.5, 95% CI =
[24.3, 26.7]). Although the optimal value was t = 2, we found that the
result that none of the psychologically motivated methods were more
accurate than the MAD-Filtered Unweighted Average to be quite
robust—from t = 0.51 (approximately 70% of judgments being
trimmed) to t = 5.5 (approximately 8% judgments being trimmed).
This is perhaps not surprising given that the psychologically motivated
methods also didn't beat the Median Judgment, which is also robust
against outliers.

Fig. 2 shows two forest plots comparing the MAD-Filtered
Unweighted Average and the Certainty-Weighted Average (the best-
performing statistically-motivated method and the best-performing
psychologically-motivated method). Both effects were positive in al-
most every experiment. There were only two exceptions. In experiment
4, both effects were negative; however, given that the experiment
consisted of only 5 questions, we think it is likely that this anomaly is
due to sample noise. In experiment 6, the Certainty-Weighted Average
effect was negative; and again, we think this probably due to sample
noise, since there were only 8 questions. TheMAD-Filtered Unweighted
Average was slightly more accurate than the Certainty-Weighted Aver-
age in the meta-analysis results; however, this was not a consistent
trend across the experiments and the difference was not statistically
significant.

Because our results are formulated in terms of errors of the range-
coded responses, it can be difficult to get a sense of what these effects
mean in practical terms. However, experiments 9, 10, 12, 13, 14, and
15 all asked questions of the same form: the birth year of a historical
figure. So for these experiments, we can report the performances of
the aggregation methods in terms of how many years they missed the
true birth year by. The graph in Fig. 3 shows the mean improvements
in absolute year error over the Unweighted Average for the Certainty-
Weighted Average and the MAD-Filtered Unweighted Average. The
MAD-Filtered Unweighted Average outperformed the Unweighted
Average in every experiment (although there was a lack of statistical
significance in experiments 9 and 14), and it resulted in an approximate
10 to 60 yearmean improvement over the Unweighted Average, whose
mean errors ranged from approximately 30 to 135 years.

We found that it wasn't possible to improve upon the MAD-Filtered
Unweighted Average with statistical significance by incorporating
the precisions and probabilities and making even more complicated
the Unweighted Average. Error bars are 95% CIs.



Fig. 2. Two forest plots comparing the Certainty-Weighted and theMAD-Filtered Unweighted Average. The plot on the left shows the improvements of the two aggregationmethods over
the Unweighted Average. The plot on the right shows the improvement of the MAD-Filtered Unweighted Average over the Certainty-Weighted Average. The marker size of an effect
corresponds (proportionally) to the weight assigned to that effect by the random effects meta analysis (cf. Cumming, 2012, Ch. 8.). Error bars are 95% CIs.

Fig. 3. Improvements of the Certainty-Weighted Average andMAD Filtered Unweighted Average over the Unweighted Average for experiments that only asked “Year of Birth” questions.
Effect sizes are measured in years, and error bars are 95% CIs. Results are reported in terms of the errors of the Unweighted Average and the improvements of the Certainty-Weighted
Average and the MAD-Filtered Unweighted Average over the Unweighted Average.
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weighted averages. For example, we expected that if after filtering
out the outliers, we then took a Certainty-Weighted Average—thus pro-
ducing a new aggregation method, which we call the MAD-Filtered
Certainty-Weighted Average—we should be able to improve upon the
MAD-Filtered Unweighted Average. However, this turned out not to
be case. All of themore complicatedmethods thatwe considered (listed
in Fig. 4) were not more accurate than the MAD-Filtered Unweighted
Average, with the exception of the MAD-Filtered Probability-Weighted
Average, which was slightly more accurate, but the difference was not
statistically significant.

5. Discussion

It is somewhat surprising that the psychologically motivated
methods didn't outperform the statistically motivated methods.
The statistically motivated methods dismiss seemingly important
information—viz., the probabilities and precisions of the confidence
intervals. That this important information is confirmed by the result
that both the precision and probability weighted averages were better
than the unweighted average, and that the confidence weighted aver-
age (which takes into account both the precisions and probabilities)
was better yet again. (Pairwise comparisons yielded no overlapping
95% CIs.)

Even more surprising was that the Certainty-Weighted Average still
did not beat the MAD-Filtered Unweighted Average even when it was
applied to the MAD-Filtered judgment set. It appears that once outliers
have been removed, the extra information used by the Certainty-
Weighted Average—that is, the precisions and probabilities—is of little
value (the MAD-Filtered Probability-Weighted Average was ever-
so slightly more accurate than the MAD-Filtered Unweighted Average,
and this difference was not statistically significant). This extra informa-
tion appears to be only of value when the outliers have not been
removed from the judgment set.

It is important to stress that results such as these can be sensitive to
how accuracy is measured. We chose to measure accuracy in terms of
the absolute error of the range-coded estimates. However, there are
many other ways to measure accuracy and each has its pros and cons
(see e.g., Armstrong and Collopy, 1992; Armstrong and Fildes, 1995;
Hyndman and Koehler, 2006). We lack the space to systematically
explore the results in terms of different error measures. However, we
Fig. 4. Themore complicatedmethods, which combinedMAD filtering with the median, weigh
than theMAD-FilteredUnweightedAverage. Example: ThemethodMAD-Entropy-Filtered Entr
then takes the Entropy-Weighted Average of the remaining midpoints.
can briefly report two main findings with respect to these issues. First,
the main results were very similar when accuracy was measured in
terms of absolute percentage error and log-ratio error. Second, the
results were quite different when accuracy was measured in terms of
squared error (of the range-coded estimates). This resulted in the
Certainty-Weighted Average being the only method that was more
accurate than the Unweighted Average with statistical significance. (A
major difference between the squared error measure and the absolute
error, absolute percentage error, and the log-ratio error measures is
that the former penalizes a method heavily for the occasional judgment
that is far from the observed value.)

All of the studied methods average the midpoints of the elicited
confidence intervals. Averaging the midpoints of confidence intervals
and looking at the effects of weighting and trimming has been studied
also by Yaniv (1997); however, in many situations best guess estimates
are also elicited and it makes sense to average those instead of the
midpoints. Seven of the experiments described above elicited best
guess estimate—that is, those that used the 4-step elicitation method.
A meta-analysis on those experiments that replaced the midpoints
with the best guess estimates produced results similar to those reported
above. However, since there were only seven experiments and these
experiments had few questions (Table 1), the 95% CIs surrounding the
effect sizes are wide (see Fig. 5). Further work needs to be done to see
if the main results of this paper transfer to the aggregation of best
guess estimates.

Our results have implications for choosing an appropriate method
for eliciting judgements. Much work has been done in developing
elicitationmethods that reduce the overconfidence effect for confidence
intervals (see e.g., Soll and Klayman, 2004; Speirs-Bridge et al., 2010;
Teigen and Jørgensen, 2005). Naturally, these methods are appropriate
when eliciting confidence intervals for a collective wisdom task, and
one might expect that the information contained in such intervals
could be used to improve the aggregated ‘best estimate’. However, our
results suggest that if one's goal is to simply obtain accurate point
estimates, then efforts might be better spent on elicitation methods
that improve the accuracy of estimates, rather than those that reduce
the overconfidence effect. For example, it has been shown that by
repeatedly asking for a single number estimate from an individual and
then taking the average of those estimates, one obtains a more accurate
estimate. This has been referred to as the crowd-within effect (see
ted averages, andMAD filtering of weightedmidpoints, did not prove to be more accurate
opy-WeightedAverage first applies theMAD filter (with t=2)of themi (max{ej}− ei) and



Fig. 5. Improvements of the aggregation methods over the Unweighted Average using the best guess estimates from experiments 1, 2, 3, 4, 5, 6, and 8. Error bars are 95% CIs.
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e.g., Herzog and Hertwig, 2009; Hourihan and Benjamin, 2010; Vul and
Pashler, 2008). If accuracy of point estimates is the priority, our results
suggest that it might be worthwhile to use such an elicitation
method—rather than one of the 3- or 4-step elicitation methods—and
combine the estimates with a statistical aggregation technique that
trims outliers. However, to make this conclusion, another study that
directly compares the different elicitation methods is required.

6. Conclusion

We studied the accuracies of a range of methods for combining con-
fidence interval inputs into point-estimate outputs. The aggregation
methods we studied fell into two kinds: those motivated by psycholog-
ical considerations and those motivated by statistical considerations.
We found that a simple trim-and-average method—that is, average in-
tervalmidpoints after outliers have been removed—produced estimates
that were more accurate than the unweighted average. Our results
show that other,more complicatedmethods,which factor in psycholog-
ically relevant information such as confidence levels and estimate im-
precision, do not produce estimates that are reliably more accurate
than those produced by the simple trim-and-average method.
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